Lower and Upper bounds for Online Directed Graph Exploration

Roger Wattenhofer

When in Montreal ...

Montreal: Full of one way streets

"About 25 per cent of streets are one-way"
Valérie Gagnon, spokesperson for the city of Montreal

Navigating in Zurich

Zurich: Full of one-way streets too...

Formal Model

- Given a strongly connected directed graph $G=(V, E)$
- All m edges have non-negative weights
- All n nodes have a unique ID
- A searcher starts from some node s
- With unlimited memory and computational power
- Has to explore the graph
- A graph is called explored, if the searcher has visited all n nodes and returned to the starting node s
- When the searcher arrives at a node, she knows all outgoing edges, including their cost and the ID of the node at the end of the edges
cf. [Kalyanasundaram \& Pruhs 1994, Megow et. al. 2011]

How good is a tour, how good is a strategy?

- Cost of a tour:

Competitive ratios for:

- a tour T :

Sum of traversed edge weights

- deterministic algorithms:
- randomized algorithms:
$\max _{\forall \text { tours } T} \frac{\operatorname{cost} \text { of } T}{\text { cost of optimal tour }}$
$\max _{\forall \text { tours } T} \frac{\text { expected cost of } T}{\text { cost of optimal tour }}$

Applications of Graph Exploration

- One of the fundamental problems of robotics cf. [Burgard et al. 2000, Fleischer \& Trippen 2005]
- Exploring the state space of a finite automaton cf. [Brass et al. 2009]
- A model for learning
cf. [Deng \& Papadimitriou 1999]

Some Related Work

- Offline: Asymmetric Traveling Salesman problem
- Approximation ratio of $\frac{2}{3} \log _{2} n$ [Feige \& Singh 2007]
- Randomized: $O(\log n / \log \log n)$ [Asadpour et al. 2010]

Undirected graph exploration:

Directed Case

- General case: $O(\log n)$ [Rosenkrantz et al. 1977]
- Lower bound: $2.5-\varepsilon$ [Dobrev \& Královič \& Markou 2012]
- Planar graphs: 16 [Kalyanasundaram \& Pruhs 1994]
- Genus at most $g: 16(1+2 g)$ [Megow et al. 2011]
- Unweighted: 2 (l. b. : $2-\varepsilon$, [Miyazaki et al. 2009])
- Does randomization help?

Exploring with a Greedy Algorithm

- Achieves a competitive ratio of $\boldsymbol{n}-\mathbf{1}$
- Proof sketch:
- Greedy uses $n-1$ paths to new nodes and then returns
- The greedy path $P_{v w}$ from v to a not yet visited node w is a shortest path
- Let T be an opt. Tour inducing a cyclic ordering of all n nodes in G, with the tour consisting of n segments.
- The path $P_{v w}$ has by definition at most the cost of the whole part $T_{v w}$ of the tour T, which consists of at most $n-1$ segments.
- Therefore, the cost of each of the n segments in T has to be used at most $n-1$ times for the upper cost bound of the greedy algorithm.

Exploring with a Greedy Algorithm - Unweighted Case

- Achieves a competitive ratio of $\frac{n}{2}+\frac{1}{2}-\frac{1}{n}$
- Proof sketch:
- The cost to reach the first new node is 1 , then at most 2 , then at most $3, \ldots$
- If we sum this up, we get an upper bound of

$$
\begin{aligned}
& 1+2+3 \ldots+(n-2)+(n-1)+(n-1) \\
= & -1+\sum_{i=1}^{n} i=\frac{n^{2}}{2}+\frac{n}{2}-1
\end{aligned}
$$

- The cost of an optimal tour is at least n.

Lower Bounds for Deterministic Online Algorithms

- No better competitive ratio than $n-1$ is possible.
- Unweighted case: No better competitive ratio than $\frac{n}{2}+\frac{1}{2}-\frac{1}{n}$ is possible.
- Both results are tight.

Lower Bounds for Randomized Online Algorithms

- No better competitive ratio than $\frac{n}{4}$ is possible.
- Proof sketch:
- When being at a node v_{i}, with $1 \leq i \leq \frac{n}{2}-2$, for the first time, then the "correct" edge can be picked with a probability of at most $p=0.5$.
- Expected amount of "wrong" decisions: $0.5\left(\frac{n}{2}-2\right)=\frac{n}{4}-1$.
- The cost of an optimal tour is 1.
- Unweighted case: No better competitive ratio than $\frac{n}{8}+\frac{3}{4}-\frac{1}{n}$ is possible.

Variations of the Model

- Randomized starting node?
- Choosing best result from all starting nodes?

- Possible solution: Duplicate the graphs, connect their starting nodes
- No better competitive ratio possible than
- $\frac{n}{4}$ (deterministic online algorithms)
- $\frac{n}{16}$ (randomized online algorithms)

Variations of the Model

- What if the searcher also sees incoming edges?

decreases lower bound by a factor of less than 2

decreases lower bound
by a factor of less than 1.5
- What if the searcher does not see the IDs of the nodes at the end of outgoing edges, but knows the IDs of outgoing and incoming edges?
- Greedy algorithm still works with same ratio (all nodes have been visited if all edges have been seen as incoming and outgoing edges)
- Lower bound examples also still work

Searching for a Node

- Not feasible in weighted graphs:

- In unweighted graphs, lower bounds for competitive ratios:

$$
\begin{array}{cc}
\text { Deterministic } & \text { Randomized } \\
\frac{(n-1)^{2}}{4}-\frac{(n-1)}{4}-\frac{1}{2} \in \Omega\left(n^{2}\right) & \frac{n^{2}}{16}-\frac{n}{8}+1 \in \Omega\left(n^{2}\right)
\end{array}
$$

- A greedy algorithm has a competitive ratio of $\frac{n^{2}}{4}-\frac{n}{4} \in O\left(n^{2}\right)$

Adding Geometry

- searcher knows coordinates of nodes
- graph is Euclidean \& planar

Adding Geometry

Adding Geometry

Adding Geometry

Adding Geometry

optimal tour:

- 2x "top+bottom"
- cost: ~2n

expected cost:
- $\sim \frac{1}{2} n$ "errors"
- cost: $\sim \frac{n^{2}}{8}$
lower bound of $\frac{n}{16}+\frac{5}{8}+\frac{1}{2 n}+\varepsilon \in \Omega(n)$

Overview of our Results

\qquad	lower bound	upper bound	mult. gap
(deterministic) general* ${ }^{*}$	$n-1$	$n-1$	sharp
(randomized) general $^{*+c}$	$\frac{n}{4}$	$n-1$	≤ 4
(d.) unweighted general*	$\frac{n}{2}+\frac{1}{2}-\frac{1}{n}$	$\frac{n}{2}+\frac{1}{2}-\frac{1}{n}$	sharp
(r.) unweighted general*	$\frac{n}{8}+\frac{3}{4}-\frac{1}{n}$	$\frac{n}{2}+\frac{1}{2}-\frac{1}{n}$	≤ 4
(d.) euclidean planar	$n-2-\epsilon^{\prime}$	$n-1$	$\leq 1.25+$
(r.) euclidean planar	$\frac{n}{4}-\epsilon^{\prime}$	$n-1$	$\leq 4+\epsilon$
(d.) unit w. euclidean planar	$\frac{n}{4}+\frac{1}{2}-\frac{2}{n}$	$\frac{n}{2}+\frac{1}{2}-\frac{1}{n}$	≤ 2
(r.) unit w. euclidean planar	$\frac{n}{8}+\frac{3}{4}-\frac{1}{n}$	$\frac{n}{2}+\frac{1}{2}-\frac{1}{n}$	≤ 4
(r.) geom. euclidean planar	$\frac{n}{16}+\frac{5}{8}+\frac{1}{2 n}-\epsilon^{\prime}$	$n-1$	$\leq 16+\epsilon$
(d.) searching a node	$\frac{(n-1)^{2}}{4}-\frac{(n-1)}{4}-\frac{1}{2}$	$\frac{n^{2}}{4}-\frac{n}{4}$	≤ 3
(r.) searching a node	$\frac{n^{2}}{16}-\frac{n}{8}+1$	$\frac{n^{2}}{4}-\frac{n}{4}$	< 4.1
* also applies to planar graphs and graphs that satisfy the triangle inequality ${ }^{4}$ $\epsilon, \epsilon^{\prime}$ denote any fixed value greater than 0 ${ }^{c}$ also applies to complete graphs and graphs with any diameter from 1 to $n-1$ ${ }^{+}$also applies to graphs with any max. incoming/outgoing degree from 2 to $n-1$ and to graphs with any minimum incoming/outgoing degree from 1 to $n-1$			

Thank you

Klaus-Tycho Förster
Roger Wattenhofer

