Lower and Upper bounds for Online Directed Graph Exploration

Klaus-Tycho Förster

Roger Wattenhofer

@GRASTA-MAC 2015

ETH Zurich – Distributed Computing – www.disco.ethz.ch

When in Montreal ...

.

Choix

Montreal: Full of one way streets

"About 25 per cent of streets are one-way"

Valérie Gagnon, spokesperson for the city of Montreal

Navigating in Zurich

Zurich: Full of one-way streets too...

Formal Model

- Given a strongly connected directed graph G = (V, E)
 - All *m* edges have non-negative weights
 - All *n* nodes have a unique ID
- A searcher starts from some node *s*
 - With unlimited memory and computational power
 - Has to explore the graph
- A graph is called explored, if the searcher has visited all *n* nodes and returned to the starting node *s*
- When the searcher arrives at a node, she knows all outgoing edges, including their cost and the ID of the node at the end of the edges

cf. [Kalyanasundaram & Pruhs 1994, Megow et. al. 2011]

How good is a tour, how good is a strategy?

Cost of a tour: Sum of traversed edge weights \bullet

Competitive ratios for:

a tour T: ۲

cost of T

cost of optimal tour

cost of T deterministic algorithms: ۲

 $\max_{\forall tours T} \ \overline{cost of optimal tour}$

randomized algorithms: ۲

expected cost of T $\max_{\forall tours \ T} \ \overline{cost \ of \ optimal \ tour}$

Applications of Graph Exploration

- One of the fundamental problems of robotics cf. [Burgard et al. 2000, Fleischer & Trippen 2005]
- Exploring the state space of a finite automaton cf. [Brass et al. 2009]
- A model for learning cf. [Deng & Papadimitriou 1999]

Some Related Work

- Offline: Asymmetric Traveling Salesman problem
 - Approximation ratio of $\frac{2}{3}\log_2 n$ [Feige & Singh 2007]
 - Randomized: O(log n/log log n) [Asadpour et al. 2010]

Undirected graph exploration:

- General case: $O(\log n)$ [Rosenkrantz et al. 1977]
- Lower bound: 2.5ε [Dobrev & Královič & Markou 2012]
- Planar graphs: 16 [Kalyanasundaram & Pruhs 1994]
- Genus at most g: 16(1+2g) [Megow et al. 2011]
- Unweighted: 2 (l. b. : 2ε , [Miyazaki et al. 2009])
- Does randomization help?

factor of 4 at most

Directed Case

 $\Theta(n)$

Exploring with a Greedy Algorithm

- Achieves a competitive ratio of n-1
- Proof sketch:
 - Greedy uses n-1 paths to new nodes and then returns
 - The greedy path P_{vw} from v to a not yet visited node w is a shortest path
 - Let T be an opt. Tour inducing a cyclic ordering of all n nodes in G, with the tour consisting of n segments.
 - The path P_{vw} has by definition at most the cost of the whole part T_{vw} of the tour T, which consists of at most n-1 segments.
 - Therefore, the cost of each of the n segments in T has to be used at most n - 1 times for the upper cost bound of the greedy algorithm.

Exploring with a Greedy Algorithm – Unweighted Case

- Achieves a competitive ratio of $\frac{n}{2} + \frac{1}{2} \frac{1}{n}$
- Proof sketch:
 - The cost to reach the first new node is 1, then at most 2, then at most 3, ...
 - If we sum this up, we get an upper bound of

$$1 + 2 + 3 \dots + (n - 2) + (n - 1) + (n - 1)$$
$$= -1 + \sum_{i=1}^{n} i = \frac{n^2}{2} + \frac{n}{2} - 1$$

- The cost of an optimal tour is at least *n*.

Lower Bounds for Deterministic Online Algorithms

- No better competitive ratio than n 1 is possible.
- Unweighted case: No better competitive ratio than $\frac{n}{2} + \frac{1}{2} \frac{1}{n}$ is possible.
- Both results are **tight**.

Lower Bounds for Randomized Online Algorithms

- No better competitive ratio than $\frac{n}{4}$ is possible.
- Proof sketch:
 - When being at a node v_i , with $1 \le i \le \frac{n}{2} 2$, for the first time, then the "correct" edge can be picked with a probability of at most p = 0.5.
 - Expected amount of "wrong" decisions: $0.5\left(\frac{n}{2}-2\right) = \frac{n}{4}-1$.
 - The cost of an optimal tour is 1.
- Unweighted case: No better competitive ratio than $\frac{n}{8} + \frac{3}{4} \frac{1}{n}$ is possible.

Variations of the Model

- Randomized starting node?
- Choosing best result from all starting nodes?

- Possible solution: Duplicate the graphs, connect their starting nodes
- No better competitive ratio possible than
 - $-\frac{n}{4}$ (deterministic online algorithms)
 - $-\frac{n}{16}$ (randomized online algorithms)

Variations of the Model

• What if the searcher also sees incoming edges?

- What if the searcher does not see the IDs of the nodes at the end of outgoing edges, but knows the IDs of outgoing and incoming edges?
 - Greedy algorithm still works with same ratio (all nodes have been visited if all edges have been seen as incoming and outgoing edges)
 - Lower bound examples also still work

Searching for a Node

- Not feasible in weighted graphs:
- In unweighted graphs, lower bounds for competitive ratios:

• A greedy algorithm has a competitive ratio of $\frac{n^2}{4} - \frac{n}{4} \in O(n^2)$

- searcher knows coordinates of nodes
- graph is Euclidean & planar

Overview of our Results

competitivity type of graph	lower bound	upper bound	mult. gap
(deterministic) general ^{*c}	n-1	n-1	sharp
(randomized) general ^{*+c}	$\frac{n}{4}$	n-1	≤ 4
(d.) unweighted general*	$\frac{n}{2} + \frac{1}{2} - \frac{1}{n}$	$\frac{n}{2} + \frac{1}{2} - \frac{1}{n}$	sharp
(r.) unweighted general [*]	$\frac{n}{8} + \frac{3}{4} - \frac{1}{n}$	$\frac{n}{2} + \frac{1}{2} - \frac{1}{n}$	≤ 4
(d.) euclidean planar	$n-2-\epsilon'$	n-1	$\leq 1.25 + \epsilon$
(r.) euclidean planar	$\frac{n}{4} - \epsilon'$	n-1	$\leq 4 + \epsilon$
(d.) unit w. euclidean planar	$\frac{n}{4} + \frac{1}{2} - \frac{2}{n}$	$\frac{n}{2} + \frac{1}{2} - \frac{1}{n}$	≤ 2
(r.) unit w. euclidean planar	$\frac{n}{8} + \frac{3}{4} - \frac{1}{n}$	$\frac{n}{2} + \frac{1}{2} - \frac{1}{n}$	≤ 4
(r.) geom. euclidean planar	$\frac{n}{16} + \frac{5}{8} + \frac{1}{2n} - \epsilon'$	n-1	$\leq 16 + \epsilon$
(d.) searching a node	$\frac{(n-1)^2}{4} - \frac{(n-1)}{4} - \frac{1}{2}$	$\frac{n^2}{4} - \frac{n}{4}$	≤ 3
(r.) searching a node	$\frac{n^2}{16} - \frac{n}{8} + 1$	$\frac{n^2}{4} - \frac{n}{4}$	< 4.1

* also applies to planar graphs and graphs that satisfy the triangle inequality⁴

 ϵ, ϵ' denote any fixed value greater than 0

 c also applies to complete graphs and graphs with any diameter from 1 to n-1

⁺ also applies to graphs with any max. incoming/outgoing degree from 2 to n-1 and to graphs with any minimum incoming/outgoing degree from 1 to n-1

Thank you

Klaus-Tycho Förster

Roger Wattenhofer

ETH Zurich – Distributed Computing – www.disco.ethz.ch