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Abstract—While SDNs enable more flexible and adaptive
network operations, (logically) centralized reconfigurations intro-
duce overheads and delays, which can limit network reactivity.
This paper initiates the study of a more distributed approach,
in which the consistent network updates are implemented by the
switches and routers directly in the data plane. In particular, our
approach leverages concepts from local proof labeling systems,
which allows the data plane elements to locally check network
properties, and we show that this is sufficient to obtain global
network guarantees. We demonstrate our approach considering
three fundamental use cases, and analyze its benefits in terms of
performance and fault-tolerance.

Index Terms—Software-Defined Networks (SDNs), Network
Updates, Proof Labeling, Decentralization, Algorithms

I. INTRODUCTION

Given the increasingly stringent requirements on the de-
pendability and performance of communication networks, it
becomes important that networks be able to flexibly adapt
to their context, e.g., react to failures or to changes in the
demand, in an automated manner. Software-Defined Networks
(SDNs) provide such flexibilities by allowing to update network
configurations programmatically, disburdening human operators
from their most complex tasks and significantly improving
reaction times. Indeed, over the last years, the algorithmic
problem of how to update networks consistently has received
much attention [1].

However, while outsourcing and consolidating the control
over switches and routers provides great flexibilities, indirection
via (remote) controllers comes with overheads in terms of
communication and computation costs, and can hence lead to
delays. In fact, it is known that updating routes in a network
while providing even simple transient properties such as loop-
freedom, requires many interactions with the SDN controller
in the worst case [2], [3], unless one resorts to packet header
rewriting. Given that the control plane can operate orders of
magnitude slower than the data plane [4], this is problematic.

This paper investigates opportunities to overcome these
overheads and hence further improve network reactivity. To
this end, we explore a more distributed approach to updating
routes in networks, reducing interactions with the control
plane without sacrificing flexibility and consistency. This is
challenging, as without a (logically) centralized network view,
switches and routers need to be able to check certain network
properties locally.

We propose and investigate the use of distributed mechanisms
based on local proof labeling systems [5], to propagate and
implement network updates entirely in the data plane. In
particular, we present a solution which allows switches and
routers to check locally if a certain network property is fulfilled
and whether a rule update can be safely applied. Consequently,
a controller (or multiple controllers, in case of distributed
SDN control planes) can simply submit update requests to
the network, which are then propagated and implemented by
the data plane autonomously. To demonstrate our approach,
we consider two fundamental properties, both related to
connectivity.

• Blackhole freedom: There is always a matching rule
forwarding a packet to the next hop switch or router.

• Loop freedom: The forwarding rules never contain a loop.

We also evaluate the benefits of our approach analytically
and investigate potential speed ups and fault-tolerance.
Contributions. This paper presents a distributed approach to
operate and consistently update software-defined networks, by
relying on local proof labeling systems. We show the feasibility
and benefits of our approach on two case studies, demonstrating
that using our approach, simple local verification is sufficient
to provide global correctness guarantees. We also show that our
approach can lead to faster and fault-tolerant network updates.
Overview. The remainder of this paper is organized as follows.
After introducing our model and preliminaries in Sections II,
we present our main approach in Section III. We discuss our
two case studies in Section IV (considering efficient updates
limited to the affected routes) and Section V (removing the
need for packet tagging), and then examine potential speed
up and fault-tolerance aspects (Section VI). After reviewing
related work in Section VII, we conclude in Section VIII.

II. MODEL AND PRELIMINARIES

We follow standard assumptions [5], [6], [7] in our work,
both regarding the network and the local verification model.
Network model. The considered networks are modeled as
connected graphs G = (V,E) with n nodes (switches, routers)
with unique identifiers and m full-duplex links. The network is
equipped with a logically centralized controller that can collect
the network state and send out conditional network updates
to the nodes, e.g., changing a forwarding rule once a certain
local condition is met [7].978-1-7281-2522-0/19/$31.00 c©2019 IEEE



Local Verification. We will also leverage a connection [5]
between proof labeling schemes [8], [9] and the SDN model [1],
see Section III. A proof labeling scheme can be characterized by
a prover-verifier-pair (P,V) as follows: Given some property
S that the network state could uphold after updates (e.g., loop
freedom), the prover P sends new labels to the nodes. The
verifier V is a distributed algorithm, running on each node v,
that can collect the labels from all neighbors N (v). It outputs
YES if property S holds and the labels are from P , but at least
one node must output NO, if the property S is violated.

III. APPROACH AND MAIN IDEA

This section presents how to leverage proof labeling schemes
in the context of consistent updates for SDNs, both from a
methodological and an implementation point of view.
Methodology. Many consistency properties are inherently
global, e.g., long loops cannot be detected by considering
the forwarding rules in the local neighborhood. Even locally
detectable problems can have an impact on nodes far away,
such as, e.g., a blackhole downstream from the packet source.

We thus utilize the power of proof labeling schemes to allow
for local verification of consistency properties, also supporting
distributed consistent network updates. In our approach, the
controller acts as the prover P . Nodes which are aware of the
current label state of their neighbors, can now check them in
the time intervals deemed necessary. In the simplest case, a
node informs all its neighbors once its label state changes.

Once being informed about label state changes, nodes can
run the verifier V to check if the (global) property S is still
correct, respectively ring an alarm (e.g., to the controller) if
not. The main idea of our approach is that a node will not
immediately apply a new label received from the controller,
but rather first check if the property S still holds from its point
of view after applying said label to itself. As such, we do not
need the large overhead of constantly communicating with the
centralized controller regarding the updated network state, but
can decide completely locally when to update.

The challenge we undertake in this paper is to actually
develop approaches that fulfill these criteria for common
consistency properties, i.e., generating distributed consistent
network updates that can be verified locally.
Implementation. Our approach is timely and can be imple-
mented in OpenFlow and P4-based programmable networks.
The implementation of the controller is simple as it only pre-
computes the information needed by the switches later, during
the network update (reducing communication and computation
overheads). Furthermore, our approach does not rely on tight
clock synchronization protocols while providing the same
benefits [10]. In the dataplane, we can use the approach
by ez-Segway [7], leveraging per-switch local controllers to
manipulate dataplane state (via OpenFlow).

IV. EFFICIENT CERTIFICATION
LIMITED TO INVOLVED ROUTES

We first present a solution for efficient certification which
only involves the nodes along routes that are actually updated
(rather than all nodes in the network).

We start with a case study on the blackhole freedom property.
A so-called blackhole occurs when a node has no matching
rule for a packet, i.e., the packet is dropped (into a blackhole).
A simple scheme to avoid blackholes for a specific network
flow is to ensure that new labels for a node v always contain
a matching rule for the flow destination d, where an update is
rejected otherwise. However, whereas this scheme is easy to
verify and apply, it suffers from the downside that every node
in the network must have a forwarding rule for said flow, even
if its packets only traverse a small subset of the nodes.

A more efficient solution would supply forwarding rules
only to those nodes actually en route, as performed e.g., in [7]
for network flows. The authors propose a distributed version
of the 2-phase update scheme by e.g., Reitblatt et al. [11]1:
the routing path for flow F is updated in reverse, where the
destination informs its predecessor on the path to update its
rules for F ′, which in turn informs its predecessor, and so
on. Eventually, the packet source will be reached, which then
knows it is safe to send packets out tagged with F ′.

Providing verifiable blackhole freedom can be directly
achieved in this setting if every node v with a new rule
for F ′ only updates if its successor w on the path has been
updated. Notwithstanding, what cannot be verified so far is the
problem of reachability, i.e., will the packets in F ′ actually
reach their target? In the prover-verifier framework, if each node
is informed about its successor, a node w could be successor
of two nodes u, v, which in turn can lead to a forwarding loop.

We can resolve this problem with a construction borrowed
from reachability in the context of proof labeling schemes [9],
by specifying both predecessors and successors of all nodes
(besides source and destination). Then, by a connectivity
argument, the packets of F ′ cannot loop and will reach the
destination when starting from the source.

While we now have verifiable blackhole freedom for the
nodes en route, we cannot use the above scheme to actually
deploy a new path for F ′. Assume that the path has at least
two nodes besides the source and the destination, then no
further node en route can actually deploy the rules for F ′

under common asynchrony [1] assumptions—both a successor
and predecessor along the route is needed.

Moreover, from a structural point of view, such a predecessor-
successor construction does not remove unnecessary forwarding
loops in the network, e.g., a loop disconnected from source/des-
tination cannot be locally detected. While such disconnected
loops might not seem as harmful from a routing point of
view, they can hinder future updates and also highlight another
downside of the above scheme, namely that it is not suitable for
purely destination-based schemes, where routing is performed
along a forwarding tree. We investigate such scenarios in the
next section, but first show how to fix our proposed scheme.

To this end, we replace the predecessor-successor relationship
with a distance labeling scheme, as described in, e.g., [8], [9].

1The 2-phase commit scheme in [11] updates the forwarding for a flow F
to F ′ as follows: The new flow rules for F ′ are distributed in the network,
and once ack’ed to the controller, the controller informs the packet source to
from now on tag all flow packets with F ′, instead of the previous tag of F .



Each node along the path of F ′ also obtains its distance to
the destination as part of the label, measured in hops along
F ′. Then, a node will only update if its successor has already
updated and its distance is exactly one less. A counting-to-zero
argument can be used to show the correctness of this scheme
w.r.t. blackhole and loop freedom, as a) only the destination
may have a distance of zero and b) the source only starts to
utilize F ′ once the path has been established.

Theorem 1. The reverse update scheme in [7] for flows can
be made locally verifiable for both blackhole and loop freedom
by enhancing it with distance labelings.

V. REMOVING THE NEED FOR PACKET TAGGING

It is sometimes possible to remove the need for packet
tagging (as required by the approach above), and hence also
reduce the number of rules to be stored by the nodes (as
they are often per-tag), by slightly relaxing the notion of
consistency. Observe that in the previous section, our approach
moreover guaranteed so-called per-packet consistency [11],
where a packet will either take the old F or the new F ′ path,
but never a mix of both. However, such stronger guarantees are
not needed in order to guarantee blackhole and loop freedom.

We assume as such that routing is to be performed
destination-based along forwarding trees, which in turn have
to be blackhole/loop-free. It was already observed in [6] that
consistency in this setting can be verified and consistently
updated by including the depth of the node v in the forwarding
tree in its label. As such, specifying the parent and the depth
suffices. In a nutshell, a node v waits until its parent w updates,
and then only updates if DEPTH(v)=DEPTH(w)+1 is satisfied.

A downside of the above scheme is that it only specifies a
single transition from old to new forwarding rules. In order for a
second and further updates to be performed, the controller needs
to again collect acknowledgments that all nodes have switched,
inducing unnecessary overhead. In the previous section and in
2-phase commit schemes in general, one can just create a new
tag to avoid such issues, e.g., transitioning from F to F ′ to F ′′

and so on. Even if F ′ is never fully implemented, the packet
source can transition to F ′′ once its path is fully provisioned.

It seems at first as if the trick of adding increasing version
numbers cannot be directly applied to forwarding trees. In
network flows, there is a single node (the source) from which
the traffic along the new path originates, whereas in forwarding
trees, all nodes can act as sources, potentially sending across
combinations of different forwarding trees (in [6]: just 2 trees).

However, instead of waiting for the last update to be
completed, we can actually mix different subsequent updates, as
long as in each intermediate possible time-step the forwarding
is performed along a forwarding tree.2 As such, we add version
numbers to each label and observe that we only need to obey
a larger-than relationship: as long as any of v’s neighbors w
is a parent in some larger version number x, v may switch to
its label (tree) with version x if DEPTHx(v)=DEPTHx(w) + 1.
Observe that a node can also skip intermediate labels.

2Note that loop freedom is a structural property of the forwarding graph.

Fig. 1. Network with old (solid) and new (forwarding) rules which requires
l − 2 ∈ Ω(n) rounds to update consistently when enforcing loop freedom.
For example, v3 cannot update before v2, and so on.

Correctness is guaranteed by the invariant that a node will
never switch to a smaller version number.3 Nodes using the
largest version number form a correct forwarding tree, as they
will not forward to nodes in other trees and in each step reduce
the distance to the destination. Next, observe that for all other
forwarding trees (version numbers), the next routing hop will
decrease the distance in the label of the parent, respectively
switch to a higher version number. Hence, the packet will reach
the destination eventually and loops in the current forwarding
state can be locally detected as well: Assume for the sake of
contradiction that the forwarding graph contains some loop
with no node ringing an alarm (outputting NO). As every node
outputs YES, we can follow the routing loop starting from some
node u, where in each step, we increase the version number
or reduce the distance. However, when we reach u again4, u
must either have a smaller depth or a higher version number
than itself, a contradiction.
Theorem 2. By augmenting the update scheme from [6] with
version numbers, s.t. a node v may update to larger version
numbers x, if its respective parent w in x is also in version
number x and DEPTHx(v)=DEPTHx(w)+1, we obtain a locally
verifiable scheme which preserves blackhole and loop-freedom.

VI. DISCUSSION: SPEED UP AND FAULT-TOLERANCE

Potential speed up gains. Nguyen et al. [7] showed in their
evaluations that decentralized consistent updates can speed up
updates by up to 45% at the median, in realistic scenarios.

We briefly analyze what sort of theoretical speed up is
possible in extreme cases, from the viewpoint of message
propagation delay, where we assume one hop to take unit time.

Consider the scenario analogously to [12, Fig. 2], shown
in Figure 1. The task is to update from the old (solid) to the
new (dashed) forwarding rules for the destination d in a loop-
free fashion. In a centralized setting, we need Ω(n) rounds
to complete the migration, as only one rule (once: two) can
be updated per round [12]. Else, asynchrony could lead to
transient loops in the forwarding graph.

While it is impossible to break the Ω(n) different updates
lower bound, distributed updates can drastically improve the
message propagation delay overhead. Assume that the controller
is connected to or placed on any arbitrary node. In a distributed
setting, the controller can pipeline the distribution of the update
labels, reaching all nodes in O(n) time. Next, the update
messages propagate one hop, each along the new forwarding
rules, again taking O(n) time. In contrast, in a centralized
setting, the controller needs to obtain an acknowledgement of
each update, in turn sending out the next update command. In
total, this requires a message propagation delay of Ω(n2).

3For practical purposes, an appropriate circular ordering could be defined.
4As we study a structural property, we assume no updates in the meantime.



Observation 1. Distributed updates can speed up the update
process by a factor of O(n), w.r.t. message propagation delay.
Fault-tolerance. Fault-tolerance is largely unexplored w.r.t.
proof labeling schemes, the only work that we are aware
of relies on a global (unspecified) notification that an error
occurred [13], investigating a single link failure. On the other
hand, there is also work that studies so-called local fixing,
where nodes/links can e.g., leave last wills behind in order to
restore properties [14]. However, such fixing is not studied
from the aspect of verification, to the best of our knowledge.

Interestingly, we can create a heuristic that directly extends
our constructions from the last section to fault-tolerance. For
destination-based routing, observe that we do not need to
forward to a node with a depth exactly one smaller, but
any smaller depth (or higher version) would suffice. In this
context, fault-tolerance could benefit benefit from link-disjoint
forwarding trees [15], which can be computed efficiently [16],
along with appropriate optimization for route lengths [17], [18].

VII. RELATED WORK

Proof labeling schemes have been widely studied in the
context of distributed computing. We take inspiration from,
e.g., [8], [9], and also refer to both articles for an introduction
to the topic. Similarly, the topic of consistent network updates
in SDNs has received much attention in the networking
community, see the recent survey in [1]. The idea to leverage
proof labeling schemes for verification purposes in SDNs was
first investigated in [5], joined with consistent updates for
destination-based routing in [6]. We extend the ideas in [6]
by handling multiple subsequent updates and also covering
flow-based routing, along with speed ups and fault-tolerance.

Nguyen et al. [7] lay the practical groundwork for our
paper, by showing how to efficiently implement consistent
SDN updates in the data plane. We build upon their work by
adding local verification to blackhole and loop-free consistent
updates, leveraging the concepts of proof labeling schemes.

Lastly, the idea of fault-tolerance in proof labeling schemes
was considered in [13], but in contrast required an explicit
(unspecified) global failure notification. Related in this context
is also the idea of local fixing [14] or preprocessing in
distributed control planes in general [5], [19], [20].

VIII. CONCLUSION

Given the constantly changing demands and requirements on
communication networks, e.g., due to security policy changes,
traffic engineering requirements, planned maintenance work or
unplanned link failures, among many more, future communi-
cation networks are expected to be changed and reconfigured
more frequently. This paper presented a distributed approach,
based on proof labeling systems, which allows to offload the
responsibility for network reconfigurations to the data plane
and hence support and speed up such reconfigurations.

We understand our work as a first step, and believe that
it opens several interesting avenues for future research. In
particular, it will also be interesting to consider the use of
randomized [21] and approximate [22] solutions to improve our
approach, provide extensions to further consistency properties

such as waypoints [23] and congestion [24], as well as
seamless updates [25], but also the inherent connections to self-
stabilization [26]. More generally, we believe that our approach
can provide interesting new perspectives on emerging self-
driving networks [27], which center around fine-grained and fast
adaptions of networks reacting to their environment, and may
hence benefit from our distributed approaches. Furthermore,
it will be interesting to investigate opportunities coming from
emerging programmable dataplanes, to speed up our approach
further, as well as to generalize it to additional use cases.
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