
Computer Communications 164 (2020) 138–147

E
T
a

b

A

K
R
A
R
P
E

1

p
w
b

a
a
s
v
t
t

a
d
c
a
o
f
e

a

h
R
A
0
(

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

fficient non-segregated routing for reconfigurable demand-aware networks
homas Fenz a, Klaus-Tycho Foerster a,∗, Stefan Schmid a, Anaïs Villedieu b

Faculty of Computer Science, University of Vienna, Austria
Institute of Logic and Computation, Technische Universität Wien, Austria

R T I C L E I N F O

eywords:
econfigurable networks
lgorithms
outing
rogrammable physical layer
valuations

A B S T R A C T

More and more networks are becoming reconfigurable: not just the routing can be programmed, but the physical
layer itself as well. Various technologies enable this programmability, ranging from optical circuit switches
to beamformed wireless connections and free-space optical interconnects. Existing reconfigurable network
topologies are typically hybrid in nature, consisting of static and a reconfigurable links. However, even though
the static and reconfigurable links form a joint structure, routing policies are artificially segregated and hence
do not fully exploit the network resources: the state of the art is to route large elephant flows on direct
reconfigurable links, whereas the remaining traffic is left to the static network topology. Recent work showed
that such artificial segregation is inefficient, but did not provide the tools to actually leverage the benefits on
non-segregated routing.

In this paper, we provide several algorithms which take advantage of non-segregated routing, by jointly
optimizing topology and routing. We compare our algorithms to segregated routing policies and also evaluate
their performance in workload-driven simulations, based on real-world traffic traces. We find that our
algorithms do not only outperform segregated routing policies, in various settings, but also come close to
the optimal solution, computed by a integer linear program formulation, also presented in this paper. Finally,
we also provide insights into the complexity of the underlying combinatorial optimization problem, by deriving
approximation hardness results.
. Introduction

The fast growth of machine learning and artificial intelligence ap-
lications will soon lead to a significant increase of data-intensive
orkloads, and hence more traffic in datacenters [1]. The latter hence
ecome a critical infrastructure of our digital society.

While the design of cost-effective datacenter networks providing
high connectivity has received much attention over the last years

lready (e.g., [2–7]), we recently witness a trend to enhance traditional
tatic datacenter networks with reconfigurable links: technological ad-
ances in reconfigurable optical switches and free-space optics allow
o adjust datacenters (e.g., [8,9]) to the workload they serve, making
hem ‘‘demand-aware’’ [10].

While reconfigurable datacenter networks can be used to adjust to,
nd hence exploit, the typically sparse and skewed [9,11–13] nature of
atacenter traffic, and hence provide shorter paths between frequent
ommunication partners, today, we lack good algorithms for designing
nd routing on such networks. In particular, most existing literature
nly considers restricted ‘‘segregated’’ routing models where traffic is
orced to either use the fixed network or a single reconfigurable link (see
.g., [9,14]), or their algorithms rely on overly simple matching-cased
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heuristics (see, e.g., [8,15–18]). While it is known that non-segregated
routing improves the performance over purely segregated routing poli-
cies [14], the landscape of corresponding algorithms is hence mostly
uncharted. In this paper we take the first steps to provide and evaluate
new algorithms that benefit from the paradigm of non-segregation,
reaping the perks of utilizing both hybrid network parts as a joint
resource (see Fig. 1).

1.1. Our contributions

This paper presents algorithms for jointly optimizing topology and
(non-segregated) routing, to build demand-aware networks which fully
exploit the available resources and flexibilities. Our study encom-
passes complexity, algorithms, and work-load-driven simulation for
such emerging networks:

1. Complexity: We prove that even the approximation of demand-
aware network designs with non-segregated routing is NP-hard,
by providing logarithmic inapproximability bounds. Addition-
ally, we show that the scenarios of one and multiple reconfig-
urable switches are polynomial-time equivalent.
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Fig. 1. In this small example, six nodes 𝑣1 ,… , 𝑣6 are connected to a reconfigurable
switch (connections dashed): the network operator can choose a matching of nodes
inside the switch, creating a direct path between two nodes each time. Consider the
case where there is a demand 𝑣1 → 𝑣5 and a demand 𝑣6 → 𝑣1. Under segregated
outing policies, one of the two demands (e.g., 𝑣6 → 𝑣1) can be routed directly via
he reconfigurable switch, whereas the other demand must be routed inefficiently via
he static topology. However, using non-segregated routing, the demand e.g., 𝑣1 → 𝑣5
ay also use the direct matching connection from 𝑣1 to 𝑣6 as well for better efficiency,

requiring just one more hop in the static topology on the link (𝑣6 , 𝑣5).

2. Algorithms: Given the hardness results, we present several
polynomial-time heuristic algorithms as well as an exact algo-
rithm based on a integer linear program (ILP) formulation.

3. Empirical results: Using multiple workload-driven simulations
(based on Facebook, Microsoft, high performance computing,
and pFabric traces), we compare our algorithms to state-of-
the-art networks based on segregated routing schemes. Our
algorithms significantly outperform segregated routing methods,
coming close to optimal ILP solutions.

1.2. Organization

We describe our formal model in Section 2 and provide inapprox-
imability NP-hardness results in Section 3. We then discuss various
routing algorithms in Section 4, ranging from a integer linear program
to greedy heuristics. The performance of these algorithms is then
evaluated in Section 5, where we use segregated routing as a baseline.
Lastly, we discuss related works in Section 6 and conclude in Section 7.

2. Model

We study the problem of computing a topology to optimally serve
a given communication pattern, where the topology combines static
(fixed) and reconfigurable links and can be jointly optimized together
by non-segregated routing. Our model closely follows the notation and
definitions of [14].

Network model. Let 𝑁 = (𝑉 ,𝐸, 𝑆,𝑤) be a weighted hybrid net-
work [18,19] connecting the 𝑛 nodes 𝑉 = {𝑣1,… , 𝑣𝑛} (e.g., top-of-the-
rack switches), using (1) (usually electrically packet-switched) static
links 𝐸 and (2) optical links implemented through an reconfigurable
optical circuit switch 𝑆.

A reconfigurable switch 𝑆 connects a set of nodes 𝑉 ′ ⊆ 𝑉 by
choosing a matching 𝑀 on 𝑉 ′, where two matched nodes are connected
by a bidirectional (undirected) link. We will also consider the directed
case, where each node may have one incoming and one outgoing
matching link. For the sake of generality, we assume each link, whether
electrical or optical, comes with a non-negative weight 𝑤 (a cost, e.g.,
latency).

Generality. Our results also apply to non-optical switches and links, as
long as they match the theoretical properties described in the model.
As such, we will only talk about reconfigurable switches and links,
simply implying any appropriate technology that matches our model.
Moreover, as we discuss in Section 3, under non-segregated routing in
weighted hybrid networks (the model we consider), the cases of one
or multiple reconfigurable switches can be easily translated to another.
We thus choose the case of one switch for ease of presentation.

Traffic demands. The resulting network should serve a certain com-
munication pattern, represented as a |𝑉 | × |𝑉 | communication matrix
𝐷 (the demand matrix) with positive real-valued entries. An entry (𝑖, 𝑗)
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in 𝐷 represents the traffic load (frequency) or demands from the node
𝑣𝑖 to the node 𝑣𝑗 .

Reconfiguration problem. We say that the hybrid network 𝑁 is
configured by the reconfigurable switches. That is, we will refer to
the set of configured links  = ∪𝑛

𝓁=1𝑀𝓁 , the union of the matchings
provided by the reconfigurable switches, as the configuration of 𝑁 . For
ease of notation, we will simply write 𝑁() to denote the concrete
topology resulting from configuration  and define 𝑑𝑖𝑠𝑡𝑁()(𝑖, 𝑗) to be
the shortest (weighted) distance from node 𝑣𝑖 to node 𝑣𝑗 on the network
𝑁(). Given a hybrid network 𝑁 and communication demands 𝐷, our
goal is to compute a network 𝑁() which minimizes the (weighted)
average path length for serving 𝐷 in 𝑁 by providing a set of matchings
 accordingly. Succinctly stated:

min
∑

(𝑖,𝑗)∈𝐷
𝐷[𝑖, 𝑗] ⋅ 𝑑𝑖𝑠𝑡𝑁()(𝑖, 𝑗) (1)

That is, we want to minimize the sum of the path lengths, weighted
by the demand (i.e., flow size) and link costs: for each ordered pair of
nodes 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , we multiply the (weighted) length of the shortest path
𝑑𝑖𝑠𝑡𝑁()(𝑖, 𝑗) from 𝑣𝑖 to 𝑣𝑗 on 𝑁() with their entry (𝑖, 𝑗) in 𝐷.

3. Hardness results

Before discussing NP-hardness results in this section, we first show
that the cases of one or many reconfigurable switches are polynomially
equivalent, by using link weights.

Problem transformation: many to one. At first sight, the case of mul-
tiple switches seems fundamentally different to just one reconfigurable
switch: some nodes might be connected to multiple switches, which
in turn might be connected to different subsets, creating complicated
combinatorial dependencies.

However, we can translate these dependencies in a few steps. For
each node 𝑣 connected to 𝑘 reconfigurable switches, we create 𝑘 nodes
𝑣1,… , 𝑣𝑘, connecting them to 𝑣 with static links of weight 0. A newly
created node 𝑣𝑖 will be used to represent the connection of 𝑣 to its 𝑖th
reconfigurable switch 𝑆𝑖. We re-create the possible reconfigurable links
from 𝑆𝑖 as follows, slightly abusing notation: for all 𝑤 connected to
𝑆𝑖, if 𝑣 was able to connect to 𝑤 via 𝑆𝑖 with a weight of 𝑐𝑖, then 𝑣𝑖
will be able to connect to 𝑤𝑖 with a cost of 𝑐𝑖 as well. However, all
possible connections from 𝑣𝑖 to other nodes, which were not originally
ossible from 𝑣 via 𝑆𝑖, get assigned a prohibitively large weight. In
urn, all original nodes are either disconnected from the new single
econfigurable switch 𝑆 or receive the same large weights for all their
ossible reconfigurable links.

Hence, we can easily translate solutions obtained on this modified
nstance back to the case of multiple switches. Respectively, if even one
econfigurable link of prohibitively large weight is chosen for routing,
e can conclude that the original instance was infeasible. We note

hat this transformation also allows us to directly transfer NP-hardness
esults from multiple switches to the case of one reconfigurable switch,
or, e.g., [14, Theorem 4], which showed NP-hardness for 2 demands
rom a min–max perspective.

Prior work [14, Theorem 3] already showed demand aware-routing
n weighted hybrid networks to be NP-hard for a single reconfig-
rable switch, but did not provide approximation bounds. We now
how that the objective value (1) of the optimal solution cannot be
pproximated better than 𝛺(log 𝑛) for 𝑛 nodes. Our reduction will
e from Dominating Set, which has a logarithmic approximation
ound [20].

heorem 1. Demand-aware routing cannot be approximated better than
(log 𝑛), unless 𝑃 = 𝑁𝑃 .
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Fig. 2. In this small example, the four node graph on the left (instance 𝐼) is
transformed to the 4 ⋅ 4 + 1 node graph on the right (instance 𝐼 ′). In 𝐼 ′, all unmarked
links (static or reconfigurable ones, dashed) have a cost of 1; reconfigurable links with
a weight of greater than 𝑊 + 2 are omitted, and static links with a weight of 𝑊 + 2
are dotted. We also omit the reconfigurable switches for less clutter. The node 𝑠 has
demands of 1 to 𝑢, 𝑣, 𝑥, 𝑦 and 𝑣′1 ,… , 𝑣′4, which each have a cost of 𝑊 + 3 if only static
inks are used. In order to improve the routing, the possible reconfigurable links of cost

can be used to build shortcuts for the demands, reaching a cost of 1 + 1+ 1 = 3 each
ime. Note that each node from 𝑣1 ,… , 𝑣4 can only create one outgoing reconfigurable
ink. When matching to nodes from 𝑣′1 ,… , 𝑣′4, only one such shortcut is created, but
hen a match to a node 𝑣′ is made, then all nodes which 𝑣 dominates in 𝐼 obtain
shortcut. Hence, the optimal solution corresponds to an optimal dominating set in

, where each extra node needed to dominate induces a penalty of 𝑊 : here 𝐼 can
e dominated by two nodes, e.g., 𝑥 and 𝑣, by matching to 𝑥′ and 𝑣′ in 𝐼 ′, only
wo demands to 𝑣′1 ,… , 𝑣′4 need to have an expensive route, which corresponds to the
ominating set size in 𝐼 . As such, if the objective function penalty in 𝐼 ′ has less
han logarithmic overhead, compared to the optimal solution, we can approximate the
omination process in 𝐼 better than logarithmically as well.

roof. Feige showed that Dominating Set cannot be approximated
etter than 𝛺(log 𝑛), unless 𝑃 = 𝑁𝑃 [20]. That is, given a graph
= (𝑉 ,𝐸), find a set 𝐾 ⊆ 𝑉 of minimum cardinality 𝑘 s.t. every 𝑣 ∈ 𝑉

is in 𝐾 or has a neighbor in 𝐾.
Let 𝐼 be an instance 𝐺 = (𝑉 ,𝐸) of Dominating Set. We construct

an instance 𝐼 ′ (𝐺′ = (𝑉 ′, 𝐸′)) of a modified demand-aware topology
design and routing problem, where a node may be connected to mul-
tiple reconfigurable switches, which in turn just connect a subset of
the nodes. Recall that we showed this problem to be polynomial-time
equivalent.

We begin with the static network in 𝐺′. We first duplicate all nodes
𝑣 ∈ 𝑉 and denote their clone by 𝑣′, creating directed links of cost 1
from 𝑣′ to 𝑣. Next, if (𝑢, 𝑣) is a link in 𝐸, then we create a directed link
with cost 1 from 𝑢′ to 𝑣, iterating this over all links in 𝐸 and adding
them to 𝐸′. However, 𝐸′ will not contain the links from 𝐸. Moreover,
we create the nodes 𝑠, 𝑣1, 𝑣2,… , 𝑣

|𝑉 |

, and 𝑣′1, 𝑣
′
2,… , 𝑣′

|𝑉 |

, connecting 𝑠
to each of the nodes 𝑣1, 𝑣2,… , 𝑣

|𝑉 |

with a directed link of cost 1, and
each 𝑣𝑖 to its respective 𝑣′𝑖 with a directed link of cost 𝑊 + 2 > 2, to
be specified later. Lastly, 𝑠 is connected to each cloned node 𝑣′ with a
directed link of cost 𝑊 + 2. Before specifying the reconfigurable part,
we create the demands 𝐷: 𝑠 has a demand of 1 to each node 𝑣′𝑖 and to
each node 𝑣 originating from 𝑉 and no further demands exist. In the
static network alone, the routing cost to each of these 2|𝑉 | nodes is
1 +𝑊 + 2, i.e., 2|𝑉 |(1 +𝑊 + 2) in total.

For the reconfigurable switches, we create |𝑉 | of those, each con-
necting a node 𝑣𝑖 with all |𝑉 | cloned nodes 𝑣′ and all |𝑉 | nodes 𝑣𝑖.
However, only the outgoing links of 𝑣′ have a cost of 1, all other
outgoing possible reconfigurable links have a cost of > 𝑊 +2. As such,
if any reconfigurable link is used for routing a positive demand that
is not outgoing from a node 𝑣𝑖, then this route has a cost of at least
1 + 𝑊 + 2, i.e., not cheaper than solely using the static network. An
example of the polynomial construction process is given in Fig. 2.

Hence, the only remaining decisions are where to match the outgo-
ing links of the nodes 𝑣𝑖, as they allow routes of cost 3: by matching
to nodes of type 𝑣′𝑖 , one demand has a cost of 3, whereas by matching
to a node 𝑣′, all nodes that 𝑣 would dominate in 𝐺 (which is at least 𝑣
itself), can be routed to with a cost of 3. In order to obtain an optimal
solution for 𝐼 ′, the task is to cover the nodes 𝑣′ with as few matching
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links as possible. If 𝐾 ′ such links, with |𝐾 ′
| = 𝑘′, suffice, s.t. all nodes 𝑣

(originating in 𝑉 ) can be reached from 𝑠 with a cost of 3, then only 𝑘′

nodes from 𝑣′𝑖 need to have their demand routed with a cost of 1+𝑊 +2.
In other words, an optimal solution minimizes 𝑘′, with a routing cost
of 𝑘′(3 + 𝑊 ) + 3(2|𝑉 | − 𝑘′) = 𝑘′𝑊 + 6|𝑉 |. Optimal 𝑘′ for 𝐼 ′ and 𝑘 for
𝐼 must have the same size, as 𝑘′ matching links (covering all nodes 𝑣
originating in 𝑉 ) represent a dominating set for 𝐺 and vice versa.

It remains to show the transfer of the inapproximability results,
which we prove in the spirit of a linear reduction [21]. To this end, we
pick 𝑊 sufficiently large, e.g., 𝑊 = 100|𝑉 |

2, one can easily optimize
for significantly smaller values of 𝑊 while retaining the same results.
Assume that our optimization problem can be approximated better than
𝛺(log 𝑛), by some approximation ratio 𝑓 . We can then approximate
Dominating Set better than 𝛺(log 𝑛) as well by (1) picking the
Dominating Set instance 𝐼 , (2) creating the corresponding instance
𝐼 ′, (3) approximating 𝐼 ′ with ratio 𝑓 , and then (4) positively answering
that a solution of size 𝑓𝑘 exists for 𝐼 , by observing the following: A
solution of size at most 𝑓𝑘′𝑊 + 𝑓6|𝑉 | of 𝐼 ′ implies that there is a
solution for 𝐼 ′ where at most ⌊𝑓𝑘′⌋ demands have to be routed with a
cost of at least 1+𝑊 +2, as 𝑊 significantly exceeds 𝑓6|𝑉 |. Hence, we
conclude that there is also a solution of 𝐼 using at most ⌊𝑓𝑘′⌋ nodes to
dominate the graph, which would imply 𝑃 = 𝑁𝑃 , as 𝑓 is not contained
in 𝛺(log 𝑛). □

4. Algorithms

Given that computing an optimal non-segregated routing on a recon-
figurable network is NP-hard to approximate, we next present various
polynomial-time heuristics as well as a non-polynomial time exact
algorithm. We start with a general ILP in Section 4.1, followed by an
algorithm for a single flow in Section 4.2. We then provide a wide
range of polynomial-time general heuristics, starting by prioritizing
large demands in Section 4.3 respectively large demands w.r.t. their
initial routing distance in Section 4.4, followed by algorithms that
greedily add paths 4.5 or links (Section 4.6), concluding in Section 4.7.

4.1. An ILP for demand-aware routing

The fundamental idea is that we would like to select a matching in
the reconfigurable switch that optimizes the objective function for the
demand matrix 𝐷.

Variables: Given a network topology, 𝑠𝑖𝑗 represents the weight of the
static link from 𝑖 to 𝑗, 𝑜𝑖𝑗 represents the weight of the reconfigurable
link from 𝑖 to 𝑗 in the reconfigurable switch and 𝐷𝑠𝑡 is the size of the
demand from node 𝑠 to node 𝑡.

We denote a matching from node 𝑖 to 𝑗 in the reconfigurable switch
by setting the value of 𝑚𝑖𝑗 to 1. The boolean 𝑥𝑠𝑡𝑖𝑗 is set to 1 if a link from
𝑖 to 𝑗 is used in the shortest path from 𝑠 to 𝑡, as well as 𝑦𝑠𝑡𝑖𝑗 if that link
is a reconfigurable one. Finally, the length of the shortest path from 𝑠
to 𝑡 is given by 𝑑𝑖𝑠𝑡𝑠𝑡.

Objective: The goal is to minimize the length of the shortest path for
each communicating pair according to their priority.

𝑚𝑖𝑛
∑

𝑠

∑

𝑡
𝐷𝑠𝑡𝑑𝑖𝑠𝑡𝑠𝑡 (2)

Constraints: A node connected to the reconfigurable switch can only
have one incoming and one outgoing reconfigurable link in the directed
case (3). In the bidirected case, creating a link from 𝑖 to 𝑗 also always
creates the reverse link from 𝑗 to 𝑖 (4).
𝑛
∑

𝑗=1
𝑚𝑖𝑗 ≤ 1;

𝑛
∑

𝑗=1
𝑚𝑗𝑖 ≤ 1 (3)

𝑚𝑖𝑗 = 𝑚𝑗𝑖 (4)
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Flow conservation: A flow that enters a node must leave it, with the
exception of the start and end nodes.

∑

𝑗
𝑥𝑠𝑡𝑖𝑗 −

∑

𝑗
𝑥𝑠𝑡𝑗𝑖 =

⎧

⎪

⎨

⎪

⎩

1, if 𝑖 = 𝑠.
−1, if 𝑖 = 𝑡.
0, otherwise.

(5)

ath cost: The length of the path from the sender to the receiver is
he sum of every link that is taken along the path. If a matching has
ccurred between two nodes, the length of the link between the two
odes is now the length of the reconfigurable link instead of the length
f the static link.

𝑖𝑠𝑡𝑠𝑡 =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
(𝑠𝑖𝑗 (𝑥𝑠𝑡𝑖𝑗 − 𝑦𝑠𝑡𝑖𝑗 ) + 𝑜𝑖𝑗𝑦

𝑠𝑡
𝑖𝑗 ) (6)

atching: If a reconfigurable link is taken between 𝑖 and 𝑗 then there
ust be a matching in the reconfigurable switch.

𝑠𝑡
𝑖𝑗 ≤ 𝑚𝑖𝑗 (7a)
𝑠𝑡
𝑖𝑗 ≤ 𝑥𝑠𝑡𝑖𝑗 (7b)

Even though the ILP presented in this section will achieve optimal
esults, its runtime is non-polynomial and it will not scale for larger
nstances. We thus present several polynomial-time heuristics, which
e will evaluate in Section 5.

.2. ReconfigDijkstra : A subroutine for a single flow

We start with the case of a single flow, which we will call as a sub-
outine in the later heuristics. We distinguish two cases, differentiating
he reconfigurable link types.

The first is ReconfigDijkstra for directed reconfigurable links,
.e., nodes connected to a reconfigurable switch can choose one out-
oing and one incoming link. Therefore, we can use Dijkstra’s
lgorithm [22] on a graph containing every possible matching candi-
ate link and the static graph, updating it afterwards, simplifying the
low algorithm in [14].

For the case of undirected reconfigurable links we adapt the Re-
onfigDijkstra algorithm. We run it in the same fashion, on a
raph in which every possible matching candidate link is present. The
ifference with this heuristic is that when it reaches a node via a
econfigurable link, it will not update new neighbors that are only
isible through another reconfigurable link. This heuristic is optimal
n the case where the reconfigurable links follow the triangular in-
quality [14]: if a shortest path requires that two reconfigurable hops
𝑢, 𝑣), (𝑣,𝑤) to be taken one after the other then |𝑢, 𝑣| + |𝑣,𝑤| < |𝑢,𝑤|

nd the triangular inequality is violated. In other words, when e.g. all
econfigurable links have the same weight, we can run an analogous
lgorithm as in the directed version. In the case where the triangular
nequality is not respected by the weights, the algorithm will give a
orrect solution, but it might not be optimal. It is an open question
f the general case can be solved optimally in polynomial time [14].
o update the graph for future computations, we first transform the
andidate links taken in the path into static links, and then delete
he candidate links that become illegal. The reconfiguration step is
inear as we are checking for every node its outgoing and incoming
inks involved in the matching. If implemented naïvely, the complexity
s 𝑂(𝑛2), which can be improved by using Fibonacci heaps in the
econfigDijkstra algorithm [23].

.3. DemandFirst: Large demands first

We first present DemandFirst in Algorithm 1. This algorithm
reedily chooses the biggest demand, and routes it through the net-

ork, creating the best matches for it. It stops when all possible a
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atches have been created or every communicating pair has been
rocessed. As the algorithm consists of running ReconfigDijkstra
or every demand, we find its complexity to be 𝑂(𝑑𝑛2) with 𝑑 being
he amount of non-zero entries in the demand matrix and 𝑛 being the
umber of nodes in the network. While it is the fastest solution, it is
blivious to the interplay of different demands.

.4. GainDemand : Gains and demands

A first improvement over DemandFirst is to take into considera-
ion the impact that creating an optimal matching for a node-pair has
n other pairs.

To this end we introduce the algorithm GainDemand (Algorithm
). We compute, for every demand, the improvement of the matching
w.r.t. the objective value) created by the algorithm ReconfigDijk-
tra, storing it in an ordered list. More formally, this improvement is
efined as:

efinition 1. Let 𝑁 be a weighted hybrid network. The gain of a
atching configuration 𝑁() for a demand matrix 𝐷 is the improve-
ent in comparison just using the static network:
∑

𝑖,𝑗)∈𝐷
𝐷[𝑖, 𝑗] ⋅ 𝑑𝑖𝑠𝑡𝑁(∅)(𝑖, 𝑗) −

∑

(𝑖,𝑗)∈𝐷
𝐷[𝑖, 𝑗] ⋅ 𝑑𝑖𝑠𝑡𝑁()(𝑖, 𝑗) .

We then run ReconfigDijkstra iteratively on the ordered list,
ntil no more matching links can be created.

The complexity of this algorithm is 𝑂(𝑑2𝑛2) as it finds the 𝑑 paths
or each of the 𝑑 matching configurations. For further runtime improve-
ents, it is possible to only consider the demands that will be affected

y the creation of matching links. GainDemand finds its limitation
hen larger sets of communicating pairs are helpful to one another.

.5. GainUpdate: Greedy paths

We next present algorithm GainUpdate (see Algorithm 3). It
s inspired by GainDemand, but it recomputes the gain after every
atching that occurs, in order to benefit from the current situation. In

ther words, when a set of demands creates a high gain for themselves,
nce one of these demand is routed, the gain can be much smaller at the
ext iteration. Its complexity is 𝑂(𝑑3𝑛2) as we are executing a similar
outine as in GainDemand after every demand gets routed.

.6. GreedyLinks: Greedy links

Lastly, in order to further shrink the gap to the optimal solution,
e introduce GreedyLinks (see Algorithm 4). The principle is the

ame as in GainUpdate, but rather than considering the set of links
ntroduced by a demand, we consider every possible link at each step.
n terms of complexity it is similar to the previous algorithm on denser
raphs, but much heavier on sparser graphs. The implementation is in
(𝑑𝑛4) for 𝑑 > 0. Instead of executing the GainDemand routine on
very demand, we will execute it on every possible reconfigurable link,
hich might form a complete graph.

.7. Routing and further extensions

Note that the Algorithms 1 to 4 only provide the graph with the
hosen reconfigurable links as an output, not the routing itself. To
his end, we run the classic (Kleene–Roy–)Floyd–Warshall(–Ingerman)-
lgorithm [24, §9.8] to obtain All-Pairs-Shortest-Paths (APSP) in 𝑂(𝑛3).
ome slightly faster APSP-algorithms exist in special cases, see [25,26].
oreover, as a heuristic speed-up, we can terminate the Algorithms 1

o 4 earlier if no more new reconfigurable links can be added.
As a further variant, we propose DemandFirst++, which takes the

riginal path lengths in the static network into account, inspired by [14,
3.1]: When sorting the demand entries in Algorithm 1 in line 1, we
irst multiply each entry (𝑖, 𝑗) in 𝐷 with the distance between 𝑖 and 𝑗
n the static network, obtained by running APSP on the static network
s well.
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Fig. 3. Left: Comparison of the achieved objective values (Eq. (1)) for our different algorithms, the baseline approaches, and the ILP. Smaller objective values are better, as they
represent the (weighted) average path lengths. Right: CPU time (logarithmic scale), where the shaded areas depict minimum and maximum values.
Algorithm 1: DemandFirst
Input: A weighted hybrid network 𝑁 and traffic demands 𝐷.

1. Sort the demand entries in 𝐷 by size in descending order.
2. Until the list is empty or no more links can be created do:

(a) Pick the first entry 𝐷𝑖,𝑗 in 𝐷.

(b) Run ReconfigDijkstra for 𝑖,𝑗 on 𝑁 .
(c) Update 𝑁 , delete the first entry in 𝐷.

Output: A graph 𝑁 with the newly created links.

Algorithm 1: Pseudocode of the DemandFirst algorithm.

Algorithm 2: GainDemand
Input: A weighted hybrid network 𝑁 and traffic demands 𝐷.

1. Initialize an empty list value.
2. For every entry (𝑖, 𝑗) in 𝐷:

(a) Run ReconfigDijkstra on 𝑁 , adding the value of the
objective function in the updated 𝑁 to value.

(b) Reset 𝑁 to its initial state.

3. Sort the items in value by size.
4. For the values of (𝑖, 𝑗) in value in descending order, until empty or all

possible matching links have been created:

(a) Run ReconfigDijkstra for (𝑖, 𝑗) on 𝑁 .
(b) Update 𝑁 , delete the first entry in 𝑣𝑎𝑙𝑢𝑒.

utput: A graph 𝑁 with the newly created links.

Algorithm 2: Pseudocode of the GainDemand algorithm.

Algorithm 3: GainUpdate
Input: A weighted hybrid network 𝑁 and traffic demands 𝐷.

1. Initialize an empty list value.
2. Until the demand matrix 𝐷 has no more entries or all possible matching

links have been created:

(a) For every demand in 𝐷

i. Run ReconfigDijkstra on 𝑁 , adding the value of the
objective function in the updated 𝑁 to value.

ii. Reset 𝑁 to its initial state.

(b) Find the maximum entry (𝑖, 𝑗) in value.
(c) Run ReconfigDijkstra for (𝑖, 𝑗) in 𝐷, update 𝑁 .
(d) Remove the entry (𝑖, 𝑗) from 𝐷 and clear value.

utput: A graph 𝑁 with the newly created links.

Algorithm 3: Pseudocode of the GainUpdate algorithm.
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Algorithm 4: GreedyLinks
Input: A weighted hybrid network 𝑁 and traffic demands 𝐷.

1. Initialize an empty list value.
2. Until no more matching links can be added to 𝑁 :

(a) For every possible further reconfigurable link 𝑒 in 𝑁 :

i. Add 𝑒 as a matching link to 𝑁 .
ii. Compute the value of the objective function on 𝑁 .

iii. Add the value (for the link 𝑒) to value.
iv. Reset 𝑁 by removing 𝑒 as a matching link.

(b) Find the best link 𝑒 in value.
(c) Update 𝑁 with the reconfigurable link 𝑒.
(d) Clear the list value.

Output: A graph 𝑁 with the newly created links.

Algorithm 4: Pseudocode of the GreedyLinks algorithm.

5. Evaluation

In order to assess the benefits of non-segregated routing and joint
optimization of the reconfigurable network, and to compare the dif-
ferent algorithms introduced above, we conducted extensive simula-
tions. We consider a datacenter scenario and use real-world workloads
based on Facebook’s datacenter traffic data [27–29], along with traffic
matrices from production clusters at Microsoft [30], from high perfor-
mance computing [31], and pFabric [32], see also [33] for a structural
analysis.

5.1. Methodology

The trace data of these sources is stored in a noSql database (Mon-
goDB), where each independent set of connection pairs is stored in a
separate collection. In order to generate workloads, we use the above
described sources of trace data. Herein the Microsoft ProjecToR traffic
matrix data is leveraged to create traces by respecting the communica-
tion probabilities between ToRs, using Python’s default random number
generator.

Tests are performed multiple times with different slices of the
request sequence. The samples are generated by defining 10 different
equally distributed starting points of the total request sequence. To
scale the problem size, we filter a slice by n pseudo randomly selected
servers. To provide a dense demand we accumulate the requests of
the selected servers within this slice of the sequence. We map the
corresponding demand to the leaves (i.e., the servers) of a three tier k-
ary fat tree [2] of diameter 6: the fixed network hence describes a Clos
topology. In addition to the Clos network, the servers can be connected
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via a single optical circuit switch providing a matching. In order to
preserve locality, we order the leaves according to their IP addresses.
The weights of the directed optical links are set to 1, while the static
link weights are set to 5.

In order to ensure a high density of the demand and hence render
the experiments more interesting, we increased the size of the request
slices to an extent, where a further increase would not lead to a
density gain. Furthermore, to increase the density of the demand we
interpret the rack-to-rack demands of the facebook traces as server-to-
server demands, between the leaves. Intra-rack communication is hence
ignored.

For our experiments, trace data was stored in MongoDB and sim-
ulations executed on a HP DL380 G9 with 2 Intel Xeons E5-2697V3
SR1XF with 2.6 GHz, 14 cores1 each and a total of 128 GB DDR4 RAM.

he host machine was running Ubuntu 18.04.3 LTS. We implemented
he proposed algorithm in Python (3.7.4) [34] leveraging the NetworkX
ibrary (2.3) [35]. To solve the ILP we used Gurobi (8.1.1) [36]. The
ungarian matching algorithm is based on Munkres (1.0.7) [37].

We set a runtime limit of 180 min for each test, which limits the
ompletion of the ILP for larger instances, but is irrelevant for the faster
euristics, except for the ones recomputing iteratively based on gain,
hich run into problems in larger networks. We note that the gain
lgorithms are not parallelized (the same holds for all heuristics), they
nly run on a single core. Furthermore, their implementation could
enefit from improved gain re-computation and a port to e.g., C++.

However, as our focus is on the quality of the achieved solutions, we
defer such optimizations to future work.

5.2. Baseline

Even though prior work [14] showed that non-segregated routing
improves over (artificially) segregated routing, the level of improve-
ment was not studied yet. To this end, we use standard2 approaches for
segregated routing in hybrid networks as a baseline, described next.

Recall that only the leaf nodes act as sources and destinations in
our setting. We hence compute a maximum weight bipartite matching
between the outgoing and incoming reconfigurable ports, as suggested
in e.g., Helios [16], denoted as SegregatedHungarian. The routing
is then performed in a segregated manner, where a route may either
use a direct matching link or the static network parts.

5.3. Further algorithms

Analogously as in Section 4.7, we implement ++ versions of both
segregated matching algorithms, where, only for the matching com-
putation, each demand entry is multiplied by its distance in the static
network.

For the sake of completeness, we furthermore include the perfor-
mance without the optical circuit switch, implemented via APSP in
NetworkX, denoted as Oblivious.

Moreover, we also lift the segregated algorithms to non-segregated
routing, by employing routing via APSP as well.

5.4. Results

We first describe our results on very small networks with 4–16
nodes, then medium size networks up to 121–432 nodes, followed by
large networks with up to 1024 nodes

Small networks. For the smallest network size in Fig. 3, with 4 to 16
nodes, we use traces from Facebook’s cluster C (Hadoop).

Performance: As shown in Fig. 3(a), the ILP achieves the best ob-
jective values, but nearly all other non-segregated algorithms achieve
similar path lengths in the very small networks. Only GainDemand

1 However, each algorithm (except the ILP) only utilized a single core.
2 Standard with respect to the studied topology.
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is an outlier, it performs even worse than the segregated algorithms.
Moreover, we can already on these small networks see a significant
difference when the optical circuit switch is turned off, roughly a factor
of 2 to 4.

CPU time: Regarding the CPU time in Fig. 3(b), the ILP’s usage is
xcessive, multiple magnitudes beyond the other algorithms. Gain-
Demand, GainUpdate, and GreedyLinks are also at least 10–100
imes slower than the remaining algorithms. The other algorithms have
imilar CPU times, with the segregated ones being a bit faster, but still
bout 10 times slower than Oblivious.

Medium size networks: Facebook cluster B (web) traces. The eval-
uation results from Facebook’s cluster B traces, for 16 to 250 nodes, are
presented in Figs. 4(a) and 4(b).

Performance: As can be seen in Fig. 4(a), Oblivious, Gain-
Demand, and the segregated matching algorithms perform roughly
similar, but all having the worst performance. The non-segregated
matching and greedy algorithms beat them by a factor of roughly 1.5,
with the DemandFirst variants performing even better. At 250 nodes,
the achieved objective value is roughly 10% less, with the ++ versions
marginally ahead.

CPU time: The CPU time in Fig. 4(b) shows a similar trend as in
he smaller networks in Fig. 3(b). GreedyLinks and GainUpdate
re more than 100 to 1000 times slower than DemandFirst, with
ainDemand being about 10 to 100 times slower. The matching
lgorithms are up to 5 times faster than DemandFirst for 16 nodes
DemandFirst still finishes in less than a second), but the run times
onverge for larger networks, being roughly identical for 250 nodes.
blivious is always faster and the gap increases with the network
ize, from about 10 to a bit over 100 times for larger networks.

edium size networks: High performance computing traces. Our
igh performance computing traces, where we have data for up to 128
odes, are shown in Figs. 4(c) and 4(d).

Performance: The situation is similar to before, where in Fig. 4(c)
ainDemand and the segregated matchings perform worst of all al-
orithms using the optical circuit switch, only beating Oblivious.
f the other algorithms, DemandFirst variants, GainUpdate, and
reedyLinks perform similarly and best, slightly ahead of the non-
egregated matchings. The performance gap between DemandFirst
nd SegregatedHungarian variants is still significant (1.5–2×).

CPU time: Regarding CPU time, the situation in Fig. 4(d) is analo-
ous to Fig. 4(b), when considering 16 to 128 nodes, though we slightly
ore variations in each algorithm’s run time.

edium size networks: Microsoft ProjecToR traces. The results for
the traces from Microsoft are shown in Figs. 4(e) and 4(f), where the
evaluated data set contains up to 121 nodes.

Performance: Whereas all other medium size trace evaluations are
roughly similar on a course scale, the Microsoft traces in particular
highlight the differences to the ++ versions. DemandFirst is about 2
times worse than its ++ variant, for all network sizes. For 121 nodes, all
further algorithms are at least 2 (4) times slower than DemandFirst
(++) too, though the performance of NonSegregatedHungarian
matches DemandFirst for 16 nodes. The segregated matching trails
a bit behind the non-segregated variants, where in turn again Gain-
Demand and Oblivious fall behind further. The performance of
GreedyLinks and GainUpdate is between DemandFirst and its
++ variant.

CPU time: In Fig. 4(f) GreedyLinks, GainUpdate, and Gain-
Demand are again several orders of magnitude slower than all other
algorithms, whereas Oblivious is about 10 to 100 times faster than
the rest. However, all these remaining algorithms use roughly similar
CPU times, with DemandFirst being slightly slower for smaller sizes
and again being slightly faster for the largest network size.

Medium size networks: pFabric traces. The evaluation results for the

pFabric traces are shown in Figs. 4(g) and 4(h).
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Fig. 4. Comparison of the different algorithms regarding objective value and CPU time.
Performance: As expected, Oblivious again performs worst in
Fig. 4(g), about 1.5× behind the segregated matching algorithms and
GainDemand, which in turn are about 1.5× behind the remaining
non-segregated algorithms. From this group, the DemandFirst vari-
ants are slightly better than the NonSegregatedHungarian, with
GreedyLinks being between both the latter and DemandFirst.
144
CPU time: The CPU time comparison in Fig. 4(h) is roughly analo-
gous to the high performance computing evaluations.

Large size networks. For the largest network size, ranging from 16
to 1024 nodes, we consider traces from Facebook cluster C (Hadoop)
in Fig. 5, as it is the only trace sample we have with sufficiently
many nodes. Herein we only evaluate the fastest and best performing
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Fig. 5. Objective (left) and CPU time (right) values for fast algorithms in larger directed networks.
algorithms from earlier experiments, i.e., DemandFirst, Segre-
gatedHungarian (also non-segregated), also their ++ variants, and
Oblivious.

Performance: The achieved objective value in Fig. 5(a) shows a
clear trend of two classes of algorithms, (1) non-segregated and (2)
segregated respectively Oblivious. Herein the non-segregated ver-
sions perform roughly 2 times better than the other algorithms until
432 nodes, followed by a slightly lesser performance increase of about
1.5 times after. For the latter, the remaining demands in the traces
are more sparse, making optimization less effective. DemandFirst
slightly outperforms NonSegregatedHungarian, where each time
the ++ variants add a barely visible level of improvement.

CPU time: For the CPU time in Fig. 5(b), the matching algorithms
are a bit faster than the DemandFirst variants, where the trend is
reversed from 432 nodes on, where for 1024 nodes, DemandFirst
uses only about 50% of the CPU time in comparison. For the matching
algorithms, the non-segregated ones are slightly slower for smaller node
sizes, but the run time nearly matches up for larger networks. The
Oblivious curve is always the lowest, several magnitudes faster for
large sizes.

5.5. Discussion and outlook

All in all, we can conclude that non-segregated approaches signifi-
cantly outperform the standard segregated routing methods on hybrid
networks, for all evaluated settings from the four traffic trace sets.
Additionally, for all studied algorithms, ++ variants improve perfor-
mance slightly (significantly for the Microsoft traces) and are hence
preferable. Interestingly, the simplest of our heuristics, DemandFirst,
in its ++ variants, typically also provides the best results, making it an
attractive solution in practice: its runtime is significantly lower than
that of the also well-performing GreedyLinks, and about the same as
for both variants of NonSegregatedHungarian, and the provided
route lengths are shorter.

Notwithstanding, even though our DemandFirst approach is not
slower than the matching algorithms, the runtime still grows rapidly
with network size. For medium-sized networks, optimized implemen-
tations in low-level languages opposed to in Python, or even in FPGAs
or ASICs, could bring the runtime down to sub-second scale, possibly
augmented by utilizing our algorithms to train machine-learning meth-
ods [38,39]. For larger networks however, we believe fundamentally
different ideas are needed.

As a first step, DemandFirst could leverage centralized dynamic
graph algorithms to compute short paths [40,41], as the network only
changes slightly in each iteration when adding a flow. Conceptually,
this could also be extended to the setting where the traffic matrix does
not change much, and hence prior solutions can be leveraged, also
for matchings [42]. As another speedup, parallel algorithms could be
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employed, as already explored for (approximate) matchings in MapRe-
duce environments [43], shared-memory multiprocessors [44], and
supercomputers [45].

To scale further however, distributed algorithms with local knowl-
edge might be the best direction. There are first intriguing propos-
als, which however are also limited. ProjecToR [9] uses a stable-
marriage idea with distributed proposals, but on the other hand consid-
ers only segregated routing along single hops. DiSplayNet [46] instead
utilizes non-segregated routing, but then only builds tree networks.
To go beyond, we envision different avenues to build fully flexible
demand-aware networks in a distributed fashion.

First, and maybe most straightforward, is to implement distributed
(approximate) matching algorithms [47, §4.3], where each node is
updated with its own traffic demands. A second approach would be to
extend e.g. DemandFirst to so-called hybrid distributed computing
models, with fast local and congested global communication. Interest-
ingly and fitting, work in this model so far focused on shortest path
computations [48–50]. Third, and so far most unexplored, would be to
extend the earlier mentioned centralized dynamic graph algorithms to
a distributed setting [51], also via distributed control planes [52] and
preprocessing [53,54]. In these contexts, so far only considered non-
distributed, it would be worthwhile to investigate the flexibility [55,56]
of network designs and the perspective of online algorithms [57].

Lastly, and orthogonal to the above directions, recent work observed
that some datacenter traffic exhibits weak temporal stability over hours
to days, which leads to a ‘‘slow-varying clustering effect ’’ [58]. In such
settings, even long precomputation times would be worthwhile, with a
small performance trade-off in comparison to ongoing reconfiguration.
Still, such stability heavily depends on the specific scenarios [33] and
can hence not always be assumed.

6. Related work

The benefits and limitations of reconfigurable (hybrid) networks,
which not only arise in datacenters but also in wide-area networks [59–
67], are currently discussed intensively in the literature, see e.g., [8,
9,16,17,59,68–72] and the survey in [73]. There is a wide spectrum
of approaches to make datacenter topologies more dynamic, with so-
lutions ranging from approaches leveraging converter switches to dy-
namically change between a Clos network and approximate random
graphs [74] to approaches based on rotor switches rotating through a
set of pre-defined matchings [75,76], as well as optical multicast [77–
79]. Some empirical studies have shown that depending on the work-
load, demand-aware networks can achieve a performance similar to
demand-oblivious networks at lower cost [8,9].

Less is known about the underlying algorithmic problem of design-
ing and routing on such topologies. The problem is related to graph
augmentation [80,81] literature considering how to enhance a given
(fixed) graph with an optimal number of ‘‘extra edges’’, sometimes
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also referred to as ‘‘ghost edges’’ [82]: the objective in this literature
is typically to provide small world properties [83] or minimize the
network diameter [84,85]. However, most of these algorithms are not
applicable directly here, where rather than individual edges, entire
matchings are added.

In this context, it could also be interesting to consider the removal
of links, e.g., for the scheduling of link repairs [86].

Most existing algorithms on the optimization of reconfigurable
topologies are restricted to ‘‘segregated’’ routing models where traffic
is forced to either use the fixed network or a single reconfigurable
link (see e.g., [9,14]), and consider simple heuristics based on match-
ings [8,15–18] and related concepts, such as edge-coloring [87] and
stable-marriage schemes [9]. The closest paper to ours is the work
by Foerster et al. [14,88], which we extend by presenting several
efficient algorithms for non-segregated routing which we also evaluate
in simulations. Furthermore, we show that not only computing exact
solutions is NP-hard, but also computing approximations.

Finally we note that there also exists much recent work on non-
hybrid, fully reconfigurable (static and dynamic) topologies that do not
account for the possibility of oblivious (fixed) links [10,46,89–92].

7. Conclusion

This paper initiated the study of efficient algorithms for non-
segregated routing and optimization of emerging reconfigurable net-
work topologies. We have shown that while the underlying problem is
hard to approximate in the worst-case, fast and simple algorithms can
significantly improve the performance compared to the state-of-the-art,
which is also confirmed by our trace-driven simulations.

We understand our work as a first step and believe that it opens
several interesting avenues for future research. In particular, it will
be interesting to provide a more complete picture of upper and lower
bounds on approximations, also by considering randomized routing.

Moreover, it would also be interesting to consider dynamic or
online settings [10], possibly in conjunction with consistent network
updates [93].
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