
On the Price of Locality in Static Fast Rerouting
Klaus-Tycho Foerster∗ Juho Hirvonen† Yvonne-Anne Pignolet‡ Stefan Schmid♠ Gilles Tredan♢

∗TU Dortmund, Germany †Aalto University, Finland ‡DFINITY, Switzerland
♠TU Berlin, Germany & University of Vienna, Austria ♢LAAS-CNRS, France

Abstract—Modern communication networks feature fully decen-
tralized flow rerouting mechanisms which allow them to quickly
react to link failures. This paper revisits the fundamental algorith-
mic problem underlying such local fast rerouting mechanisms. Is
it possible to achieve perfect resilience, i.e., to define local routing
tables which preserve connectivity as long as the underlying
network is still connected? Feigenbaum et al. [1] and Foerster et
al. [2] showed that, unfortunately, it is impossible in general.

This paper charts a more complete landscape of the feasibility
of perfect resilience. We first show a perhaps surprisingly large
price of locality in static fast rerouting mechanisms: even when
source and destination remain connected by a linear number of
link-disjoint paths after link failures, local rerouting algorithms
cannot find any of them which leads to a disconnection on the
routing level. This motivates us to study resilience in graphs
which exclude certain dense minors, such as cliques or a complete
bipartite graphs, and in particular, provide characterizations of
the possibility of perfect resilience in different routing models. We
provide further insights into the price of locality by showing
impossibility results for few failures and investigate perfect
resilience on Topology Zoo networks.

I. INTRODUCTION

Traditional communication networks can be modelled as
distributed systems in which routers cooperate to compute
efficient routes. In particular, using protocols based on link
state or distance vector algorithms, routers can—in a dis-
tributed manner—compute routing tables which induce shortest
paths [3]. These protocols can also naturally cope with failures:
whenever one or multiple links fail, the distributed routing pro-
tocol is simply invoked again, triggered by the nodes incident to
a failed link. The protocols are hence in some sense “perfectly
resilient” [1]: After reconvergence, the protocol re-establishes
a path between any pair of nodes still physically connected,
by dynamically updating their routing tables. Unfortunately,
however, the recomputation and dynamic update of routing
tables comes at the cost of slow reaction time [4].

Modern dependable communication networks hence addi-
tionally feature fully decentralized flow rerouting mechanisms
which rely on static routing tables and allow to react to
link failures orders of magnitudes faster than traditional
networks [4]. Rather than invoking the distributed routing
protocol when detecting a failure, these static fast rerouting
mechanisms allow to predefine conditional failover rules at
each router: these rules can depend only on local information
at a node v, and can hence be conditioned on the status of links
incident to v or the header of packets arriving at v, but not
on failures in other parts of the network. While this enables a
very fast reaction, it raises the question of how such local rules
can be defined to maintain a high resilience under multiple

link failures. Feigenbaum et al. [1] showed that achieving a
perfect resilience using static fast rerouting mechanisms is
unfortunately impossible in general: the authors presented an
example network in which it is not possible to predefine local
failover rules which ensure that as long as the underlying graph
is connected, the routing tables induce a valid routing path
to the destination. In other words, there is a price of locality:
local fast rerouting comes at a cost of reduced resilience under
multiple link failures.

This paper provides a systematic analysis aiming to char-
acterize the feasibility of perfect resilience using static fast
rerouting, motivated by Feigenbaum et al.’s counterexample.
Indeed, their work raises a number of interesting research
questions, such as:

• How significant is the price of locality? Is it at least
possible to compute local failover rules which ensure
connectivity on the routing level if the underlying network
remains highly connected after the link failures?

• How does the resilience depend on the model? What
happens if we include the promise of high connectivity or
few failures, respectively, if we aim for smaller routing
tables and do not match on the packet source or not even
on the destination—where are the boundaries between
working algorithms and impossibility? This question is
particularly interesting in the light of emerging software-
defined networks which allow routers to match different
header parts and thus implement different routing models.

A. Contributions

This paper aims to chart a more complete picture of
the feasibility of perfect resilience with local fast rerouting,
focusing on the most fundamental aspect: reachability. We
first show a perhaps surprisingly general negative result: even
when a large number of link-disjoint paths survive after link
failures, local failover routes cannot leverage them to reach
the destination. Specifically, we prove the following price of
locality: even if we are promised that there remain Ω(n) disjoint
paths between source and destination after failures (we refer to
this scenario as r-tolerant where r = Ω(n)), it is impossible
to pre-define static routing tables ahead of time which ensure
connectivity without knowing these failures; here n refers to the
# of nodes (§III). Prior work only showed impossibility for 1-
tolerance and left higher connectivity guarantees to future work.

Motivated by this result, we study the feasibility of perfect
resilience in graphs which exclude certain dense minors, such
as cliques or a complete bipartite graphs. We present an almost
optimal characterization of resilience in the different models.
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First, for a model in which routers can match both the source
and the destination of a packet, we show that perfect resilience
is impossible on any graph which has a minor K7 or a minor
K4,4 which misses one link, but possible on K5 and K3,3

networks and their minors (§IV).1

In a model where routing rules can only match the packet
destination, it is impossible to achieve perfect resilience on
networks with minors K5 and K3,3 which miss one link; this
characterization is complete in the sense that we can show that
perfect resilience is always possible on K5 and K3,3 networks
which only miss two links, and their minors (§V).

We also study the price of locality in scenarios in which
the number of link failures is bounded (§VI) as well as in
scenarios in which the local routing rules do not even depend
on the destination but where a packet needs to tour the entire
network, i.e., visit all nodes under failures (rather than routing
to a specific destination); we provide an exact characterization
of perfect resilience in this model as well, touring is possible
if and only if G is outerplanar (§VII).

Lastly, we also perform a small case study in §VIII on
more than 250 Topology Zoo networks: around a third of
all networks allow for perfect resilience in all models, while
the classification of the remaining topologies depends on the
routing model considered. For destination-based routing, our
contributions allow us to to classify more than 30% additional
topologies than with previous results.

B. Background and Related Work

The question of how to provide resilient routing in networks
is a fundamental one and has been explored intensively in
the literature already [4]. In particular, failover resiliency can
impose a trade-off on, e.g., stretch or latency [5]–[7]: “a robust
route is not necessarily the shortest route” [8]. Hence, it can
be worthwhile to consider detours through highly connected
components, in case further failures appear downstream [9], and
to such an end also investigate on how to rank the connectivity
properties of nodes [10]. While such detours or failover routes
can also be enhanced by shortcutting the paths before global
convergence kicks in [11], we in this paper focus on the aspect
of resilience under rapid (instantaneous) reaction times.

Many existing approaches require dynamic routing ta-
bles [12]–[14] which implies slow reaction times [4], or the
ability to rewrite or extend packet headers which introduces
overheads and is not always possible [15]–[17]. Our require-
ment of static failover tables and immutable headers also
rules out the application of graph exploration techniques such
as [18]–[21] or the use of rotor routers [22]–[24]. Also classic
routing algorithms for sensor networks, such as geographic
routing [25]–[29], require memory and are hence not applicable
in our context. Furthermore, while there exist graph exploration
algorithms which do not require any memory, e.g., for mazes
consisting of a single wall (see e.g., the well-known right-hand
rule [30]), these algorithms are transferrable only (if at all) to
very simple graphs such as outerplanar graphs [2]. Our model

1 A Kn is a complete graph with n nodes, whereas a Ka,b is a complete
bipartite graph with a respectively b nodes in its two partitions.

hence assumes an interesting new position in the problem
space: while it is not possible to use dynamic memory during
routing (neither in the packet header nor in the routing table),
it is possible to pre-process2 conditional routing rules ahead
of time, without knowing the actual failure scenarios.

The model considered in this paper was introduced by
Feigenbaum et al. [1], [34] and, in a slightly more restricted
version, by Borokhovich et al. [35] in parallel work. While there
has been interesting applied work on this problem, e.g., [36]–
[39], in the following, we will focus on related works providing
theoretical insights.

1) Ideal versus Perfect Resilience: Several interesting results
are due to Chiesa et al. who presented a technique which
relies on a decomposition of the network into arc-disjoint
arborescence covers [40]–[42]: any k-connected graph can be
decomposed into a set of k directed spanning trees [43] (rooted
at the same node, the destination) such that no pair of spanning
trees shares a link in the same direction. This allows to route
packets along some arborescence until hitting a failure, after
which the packet can be rerouted along a different arborescence.
This technique is particularly well-suited to provide a weaker
notion of resilience, known as ideal resilience [42], which is
defined for k-connected graphs (while the notion of perfect
resilience applies to arbitrary graphs): given a k-connected
network, static failover tables are called ideally resilient if they
can tolerate any set of k − 1 link failures. In contrast, perfect
resilience is defined for all graphs: static failover tables are
called perfectly resilient if they can tolerate any set of failures,
as long as the destination is still connected to the packet’s
source after failures. As thus perfect resilience is stronger
than ideal resilience: perfect resilience implies ideal resilience,
but not vice versa. While Chiesa et al.’s paper already led to
several follow up works [5], [6], [44]–[46], it remains an open
question whether ideal resilience can be achieved in general
k-connected graphs.

As mentioned above, already Feigenbaum et al. [1], [34]
proved that perfect resilience is impossible to achieve in general,
by presenting a counterexample with 12 nodes. Foerster et
al. [2] recently generalized this negative result by showing
that it is impossible to achieve perfect resilience on any non-
planar graph; furthermore, planarity is also not sufficient for
perfect resilience. On the positive side, [2] showed that perfect
resilience can always be achieved in outerplanar graphs, and
also initiated the study of routing rules which can depend on
the source. In this paper, we significantly extend these results
along several dimensions.

C. Overview

The remainder of this paper is organized as follows. We
introduce our formal model in §II. In §III, we show that
maintaining connectivity with local failover rules is challenging
already in highly connected graphs, and even if routing rules
can depend on the source. This motivates us to study perfect
resilience on graphs with dense minors, in a model where

2 Here we also refer to the SUPPORTED model [31]–[33], which investigates
on a fundamental level what can and what cannot be pre-processed.
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routing tables can (§IV) or cannot (§V) depend on the source.
We then investigate the problem of perfect resilience under
a bounded number of link failures (§VI) and study a novel
failover model, where routing cannot depend on source and
destination but where a packet needs to visit the entire graph
(§VII). In §VIII we then perform a case study on Topology
Zoo networks to classify them w.r.t. perfect resilience. We
conclude our contribution and discuss future directions in §IX.

II. MODEL

We are given a communication network which we model as
an undirected graph G = (V,E), where the nodes represent
routers that are connected via links E. We define n = |V |,
m = |E|, and write VG(v) and EG(v) for the neighbors and
incident links of node v, respectively; if clear from the context,
we will omit the subscript G. We will also write V (G) and
E(G) for the nodes V , respectively links E, of a graph G =
(V,E). When talking about connectivity, we always refer to
link connectivity, i.e., two nodes v, w ∈ V (G) are k-connected
if there are k paths between v and w that do not share any links,
such paths are also called link-disjoint paths. The notations Kn

and Ka,b refer to the complete graph with n nodes, respectively
the complete bipartite graph with a and b nodes in its partitions.
For the latter notations, when adding the superscript −c, i.e.,
K−c

n and K−c
a,b , we remove c links from the respective graphs.

The network is subject to link failures, which however are
not known ahead of time, when the routers are configured.
We will refer to the set of links which will fail by F ⊂
E; failures are undirected. The graph G without links F is
denoted by G \ F := G(V,E \ F ). Similarly, G \ E′ and
G \V ′ denote the graph G without the set of links in E′ ⊂ E,
respectively, the graph G without the set of nodes V ′ ⊂ V and
their incident links.

Each node v ∈ V is configured with a local forwarding
function π(v), essentially a forwarding table. This forwarding
table (or synonymously, routing table3) is essentially a set of
forwarding rules which include conditional failover rules that
depend on the incident link failures. Specifically, the rules π(v)
of node v can depend on (a subset of) the following information:

• the set of incident failed links F ∩ E(v)
• the source s of the to-be-forwarded packet at v
• the destination t of the to-be-forwarded packet at v
• the incoming port (in-port) from which the packet arrives

at v
In this paper we aim to chart a landscape of resiliency results

for different models, and we hence consider multiple combi-
nations of the above information. However, all these models
have in common that the routing table is pre-configured and
static, and forwarding rules do not change the packet header.

A local routing algorithm is hence simply a forwarding
function πv for each node v. For example, in the most general
model where all information can be accounted for, given a
graph G and a destination t ∈ V (G), the function is

πv : 2E(v) × V × V × E(v) ∪ {⊥} 7→ E(v)

3 While forwarding table is the technically correct term, we will use the term
interchangeably with the term routing table.

v

v1

v2v3

v4

v

v1

v2v3

v4

Fig. 1. On the left is an example for a forwarding pattern for the node
v that follows a cyclic permutation (v1, v2, v3, v4): packets coming from
v1 are forwarded to v2, packets from v2 to v3, from v3 to v4, and from
v4 to v1. Other examples for cyclic permutations for the node v would be,
e.g., (v1, v3, v4, v2) or (v1, v4, v3, v2). On the right is an example for a
forwarding pattern for the node v that does not follow a cyclic permutation,
as, e.g., v will not route any incoming packet to v1 or v4.

at each node v ∈ V (G), where ⊥ represents the empty in-port,
i.e. the starting node of the packet. In other words, given the set
of failed links F ∩E(v) incident to a node v, the source and the
destination, as well as the in-port, the forwarding function πv

maps each incoming port (link) e = (u, v) to the corresponding
outgoing port (link). We will call the union of the forwarding
functions π = (πv)v∈V the forwarding pattern, or simply the
routing. In the following, we will use the notation

πs,t
v (e, F ) resp. πs,t

v (u, F )

to denote the link to which a packet arriving at v via the link
e = (u, v) will be forwarded, given a failure set F and in a
model where the rule matches both source s and destination
t. We will refer to these types of rules as source-destination-
based routing. Similarly, we will use the notation πt

v(e, F )
resp. πt

v(u, F ) to denote the link to which a packet arriving at
v from a link e = (u, v) will be forwarded, given a failure set
F and in a model where the rule matches only the destination
t. We refer to these types of rules as destination-based routing.

Note that we do not require these forwarding patterns to
follow some sort of cyclic permutation (as in, e.g., Figure 1)
of the out-ports for neither of the routing flavours .

We will call a forwarding pattern π r-resilient if for all
G and all F , where |F | ≤ r, the forwarding pattern routes
the packet from all v ∈ V to any destination t when v and t
are connected in G \ F . Note that the restriction that source
and destination must remain connected when removing the
links in the failure set F implies that the connectivity of the
graph does not play a big role. E.g., consider a graph G which
consists of a cliques of size l an one extra node connected
to the clique with one link. While the connectivity of G is
one, it is easy to construct forwarding patterns that tolerate
two failures for packets originating from the extra node if
the remaining graph stays connected. A forwarding pattern is
perfectly resilient if it is ∞-resilient: the forwarding always
succeeds in the connected component of the destination, for
all destinations. Let Ap(G, s, t) be the set of such perfectly
resilient patterns (algorithms), respectively Ap(G, t), Ap(G)
for the different models depending only on the destination or
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not even that; we abbreviate these versions by Ap when the
context is clear.

To explore the achievable resilience of local fast rerouting
algorithms beyond perfect resilience, we in this paper are also
interested in a relaxed notion of resiliency, where we are given
the promise of high connectivity after failures:

Definition 1 (r-tolerant). A forwarding pattern πs,t is called
r-tolerant on a graph G, if it can guarantee reaching the
destination t from source s under the assumption that s and t
remain r-connected under failures.

Observe that r = 1-tolerance corresponds to perfect re-
silience and that, for r < r′, if we have r-tolerance, we also
obtain r′-tolerance: the failure sets Fr that retain r-connectivity
are a superset of the failure sets Fr′ that retain r′-connectivity.
For example, a perfectly resilient algorithm (1-tolerant) is also
2-tolerant.

III. ON THE PRICE OF LOCALITY

Before studying perfect resilience in detail, we first consider
a weaker notion of resilience: the design of local rerouting
functions for scenarios where the connectivity remains larger
than one after failures. We derive a surprisingly strong negative
result on what can be achieved with static fast rerouting:

It is generally impossible to be Ω(n)-tolerant, even when
forwarding rules can depend on both source and destination.

Prior work just showed that 1-tolerance is impossible in
general, but the details for higher connectivity promises were
left unanswered. Indeed, at first it seems that if we are
guaranteed that a linear number of paths exist after failures
between source and destination, then surely fast failover
mechanisms should be able to leverage this high connectivity.
However, we show next that this intuition is false.

A. Intuition and Example

Intuitively, the more highly connected the topology is after
failures, the easier it should be to ensure connectivity also with
local static rerouting. However, as we will illustrate here on
complete networks, this additional topological connectivity
is only marginally useful. Concretely, while an r-tolerant
algorithm in principle has more flexibility, in the sense that it
can afford to not explore a certain route at all (as there are for
sure alternative routes), and hence e.g., avoid potential loops,
this additional connectivity is hard to exploit locally: such a
choice can only be made r−1 times for an r-tolerant algorithm,
among all nodes in the graph. In other words, the flexibility is
restricted globally, while decision making is inherently local.
We refer to Fig. 2 for an illustration.

B. Impossibility of r-Tolerance in General

We show the following general impossibility result, namely
that r-tolerance is impossible in general, already on instances
that only grow linearly with r:

Theorem 1. Let r ∈ N. The complete graph with 3+5r nodes
does not allow for an r-tolerant forwarding pattern πs,t.

s

v1

v3

v′1

v′3

tv2 v′2

Fig. 2. After failures (in dashed red), s and t remain 2-connected, as there
are two crossings across the blue dotted cut. Assume v1 does not forward to
v′1 and v2 does not forward to v′2. Then, as the link between v3 and v′3 has
failed, it is impossible to reach t from s. Note that from a local point of view,
v1, v2, v3 are unaware of the failures at each other, and hence to guarantee
2-tolerance, at least two of v1, v2, v3 must forward across the blue dotted cut,
to their respective v′1, v

′
2, v

′
3, if still possible after failures.

Proof: From K3+5r we choose 5 nodes V5 =
{v1, v2, v3, v4, v5} not including s and t. Consider all triples
a, b, c ∈ V5, such that, if b has a degree 2 after failures
(connected to only a, c), then b will not forward a packet from
a to c. If such a triple exists, then leave the path s−a−b−c−t
intact after failures and remove all other links of a,b, and c. We
have constructed a partial failure set and a path from source
to target that is not used by the forwarding pattern under this
partial failure set.

If such a triple does not exist, then all nodes in V5, with
degree 2 after failures, will route in a permutation, assuming
their neighbors are from V5. Without loss of generality
(W.l.o.g.), leave the path s− v1 − v2 intact after failures, but
fail all other links of v1. Then, for v2, leave only the links to
v3, v4, v5 alive after failures. If the routing of v2, coming from
v1, does not enter a permutation containing all 4 neighbors,
with vi ̸= v1 missing, then we fail all links incident to v3, v4,
and v5, except the links to v2 and the link between vi and t.
Now, the packet coming from v1 to v2 will not reach vi, and
hence we lose one path to destination. On the other hand, if
vi = v1 is missing, then we fail all links incident to v3, v4,
and v5 and the packet is trapped in the 5-node construction
without returning to s via v1.

Else the routing is a cyclic permutation. Assume w.l.o.g. the
cyclic ordering for v2 is v1, v3, v4, v5. We then fail all links
incident to v3, v4, and v5, except the link to v2 and the links
(v4, t) and (v2, v5). Now, the packet is routed s− v1 − v2 −
v3 − v5 − v2. The packet will then go to v1 and start a loop –
we lose one path to the destination, namely via v4.

We repeat the construction above r times in total, always
picking a new set of 5 nodes. Each time we either lose one
path to the destination or find a routing loop. If we lose r
paths, then the construction is complete, but we also need to
consider the case where we are trapped in a routing loop in a
5-node gadget, as then the st-connectivity is r−1. To this end,
we use the one remaining node v from K3+5r, and leave it
connected to s, but fail all its other incident links except (v, t).
W.l.o.g., we can assume that v is last in the visiting order of
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s. If we lose r paths, then we disconnect v from t and hence
the packet loops permanently, as none of the other 5 node
constructions allow passing to the destination. If we do not
lose r paths, then the path s− v − t restores st-connectivity
to r, as promised, but the packet loops in one of the 5 node
constructions.

Note that r-tolerance is preserved under iteratively taking
subgraphs, i.e., if G allows for r-tolerance, then every G′ ⊂ G
allows for r-tolerance as well. The reason is that we can obtain
G′ as a component of G by failing the missing links.

Corollary 1. Let r ∈ N. If a graph G has K3+5r as a subgraph,
then G has no r-tolerant forwarding pattern πs,t.

C. r-Tolerance and Minors
Even though r-tolerance is preserved under taking subgraphs,

we next show that r-tolerance is not preserved for graph minors,
for all r ≥ 2. This is in contrast to the result of Foerster et
al. [2], who showed that it is preserved for r = 1. In other
words, there is a fundamental distinction between r = 1 and
all larger r, which is to be investigated in future work:

Theorem 2. For each r ∈ N : r ≥ 2 holds: There exists an
r-tolerant graph G with a minor G′ that is not r-tolerant.

Proof: Given parameter r > 1, let the construction from
Theorem 1 be denoted by G′. We will next show how to build
a graph G, s.t. G is r-tolerant and G′ is a minor of G: Given
G′, add a new source node s′, connect it with r− 1 paths to s,
and add the link (s′, t). An algorithm that is r-tolerant on this
new graph simply routes from s′ to t via the direct link; if that
link fails, the r-tolerance promise does not hold. Now, observe
that the graph construction from Theorem 1 is a minor of the
above construction (obtained by merging s′, s, as well as the
paths between them, and removing the link between s′ and
t), i.e., the existence of an r-tolerant forwarding pattern does
not imply the existence of an r-tolerant forwarding pattern for
minors, for any r ≥ 2.

We note that if s and t are less than r-connected before
the failures occur, r-tolerance trivially holds: r-tolerance is
a promise problem, only considered under high connectivity.
On complete graphs, r-tolerance is also trivial for Kr+1, as
a removal of the source-destination link removes the promise
of r-connectivity. We can slightly extend this result and give
promises for connectivity beyond r:

Theorem 3. For each r ∈ N K2r+1 admits r-tolerance.

Proof: Foerster et al. [2, Theorem 6.1] showed that perfect
resilience can be maintained if source and destination have
distance at most two after failures, and we now leverage their
algorithm. Assume that the link between source and destination
fails on K2r+1 – else the statement holds by routing in a single
direct hop. When source s and destination t on K2r+1 remain
r-connected, then s is connected to at least r neighbors V1

different from t and t is connected to at least r neighbors V2

different from s. Besides source and destination, K2r+1 has
only 2r − 1 nodes, and hence |V1 ∩ V2| ≥ 1, i.e., a path of
length 2 exists between source s and destination t.

We next briefly investigate complete bipartite graphs. If
source and destination are in the same part, then the distance-
2 algorithm [2, Theorem 6.1] applies if the other part has
at most 2r − 1 nodes, as in the proof above. If source and
destination are in different parts, then the distance-2 algorithm
is no longer directly applicable, as every route besides the direct
source-destination link has a length of at least 3. However, we
can extend the distance-2 forwarding pattern to distance 3 in
complete bipartite graphs, as described in the following proof:

Theorem 4. For all bipartite graphs G there is a forwarding
pattern πs,t that can guarantee reaching the destination t from
source s, if s and t are at distance at most 3 in G \ F .

Proof: First, whenever the destination is a neighbor, we
route to it, as highest priority. Else, the source and each
neighbor of the source routes in a cyclic permutation. If a
node is not the source or a neighbor of the source, then the
packet bounces back (distance to source = 2). We only visit
a node v of distance 3 if v = t. Moreover, if the st-distance
is at most 3, we will also reach t from s, as (without the hop
to the destination or stopping when finding the destination),
our algorithm traverses all links E1 incident to the destination
and all links E2 adjacent to those in E1, i.e., t is found with
a distance of at most 2, and if the distance is exactly 3, the
last link is adjacent to a link in E2.

Applying Theorem 4 to complete bipartite graph yields:

Theorem 5. For each r ∈ N K2r−1,2r−1 admits r-tolerance.

Proof: Let A and B be the two parts of the bipartite graph
K2r−1,2r−1. Assume w.l.o.g s ∈ A. We now perform a case
distinction whether t ∈ A. We start with the case where this is
true. Due to r-connectivity after failures, the source s retains
at least r neighbors Vs in B, and the destination t retains at
least r neighbors Vt in B as well. Hence, |Vs ∩Vt| ≥ 1 due to
B having at most 2r− 1 nodes, i.e., a route of length 2 exists
between s and t.

We next consider the remaining case where w.l.o.g. the
destination is in B the second part. If the link (s, t) exists we
are done immediately and hence assume it has failed. Else, s
has at least r neighbors Vs in B and t has at least r neighbors
Vt in A. Pick u ∈ Vs: u has at least r − 1 neighbors Vu in
A−{s}. Since |A−{s}| = 2r− 2, Vt ∩ (A−{s}) (of size r)
and Vu ∩ (A− {s}) (of size r − 1) necessarily intersect. Let
w a node in this intersection: w is neighbor of both u and t,
hence source and destination have a distance of at most 3 via
the path s− u− w − t.

We recall that r-tolerance is preserved for all subgraphs and
obtain the following corollary:

Corollary 2. For each r ∈ N it holds that K2r+1 and
K2r−1,2r−1 and all their respective subgraphs admit r-
tolerance.

IV. PERFECT RESILIENCE WITH SOURCE

Given our insights on the feasibility of local fast rerouting in
more highly connected graphs, we now turn to studying perfect
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resilience: resilience in scenarios where arbitrary links can fail,
as long as the graph remains connected. Recall that we aim
to chart a landscape of perfect resilience in this paper, and in
this section, we start analyzing a model where routing rules
can depend both on the source and the destination of a packet.
In the next section, we will then consider the scenario where
rules can only depend on the destination. Given the result of
the previous section, our characterization will revolve around
graphs which feature dense minors before failures occur.

A. Impossibility Results

We first show that it is impossible to achieve perfect
resilience on complete graphs with seven nodes.

Theorem 6. The complete graph with seven nodes, minus one
link, does not allow perfect resilience, i.e., Ap(K

−1
7 , s, t) = ∅.

Note that when considering perfect resilience, it is at most
as hard to route in a subgraph as one can treat the missing
edges as failed edges to simulate a forwarding pattern of a
supergraph. We will see in our case study in Section VIII that
removing one link makes a difference for the applicability of
our results.

Proof Sketch: The proof idea is depicted in Fig. 3: as
any of the neighbors of v2 could be the only way to reach t,
v2 must route in a cyclic permutation if no incident links fail,
analogously for the neighbors of v2 if they have a degree of
two and do not neighbor s, t after failures. Hence, for every
permutation chosen for v2, the failures of the surrounding
nodes can be adjusted such that a routing loop occurs.

The above proof never removes more than 15 links, hence:

Corollary 3. Even under the promise that at most 15 links
fail and there is an st-path, the complete graph K7 with seven
nodes does not allow for a forwarding pattern πs,t that can
guarantee reaching the destination t from source s if |F | ≤ 15.

The impossibility can be shown on the K4,4 analogously,
however, as it is much sparser than the K7, we need to remove
fewer links. We refer to our technical report [47] for details.

Theorem 7. The complete bipartite graph with eight nodes,
four in each part, minus one link, does not allow for perfect
resiliency, i.e., it holds that Ap(K

−1
4,4 , s, t) = ∅.

Corollary 4. Even under the promise that at most 11 link
fail and that there is an st-path, the complete bipartite graph

s

v5

v1

v2

v3

v4

t

Fig. 3. K7 (without s-t link) impossibility, when v2 routes with the
permutation v1, v3, v4, v5, v1. As v3, v5 also route in a cyclic permutation,
due to local indistinguishability, packets loops permanently in v2−v3−v5−v2.

Algorithm 1 Perfectly resilient algorithm for K5 and its minors
Input: packet from source s to be delivered to destination t,

local failure set Fi, identifiers u < v < w
Output: forwarding port decision at node i

1: if (i, t) /∈ Fi then
2: send to t
3: else if i = s then
4: if exactly one neighbor v is reachable then
5: send to v
6: else if exactly two neighbors u, v are reachable, u < v

then
7: if inport = ⊥ then send to u
8: else send to v ▷ ignore inport
9: else if exactly three neighbors u, v, w are reachable,

u < v < w then
10: if inport = ⊥ then send to u
11: else if inport = w then send to v
12: else then send to w ▷ coming from u or v
13: else
14: if inport = s then send to the neighbor with lowest

ID (not s) or send back to s if no other choice
15: else if there is a reachable neighbor x and inport ̸= x

then send to x
16: else if s is reachable then send to s
17: else send back to inport

K4,4 does not allow for a forwarding pattern πs,t that can
guarantee reaching the destination t from source s if |F | ≤ 11.

1) Generalization of Impossibility: Minor Relationships:
It was previously shown that if a graph G allows for perfect
resiliency with the source, so do all minors of G [2, §4]. Hence
and in particular, all graphs containing a K4,4 or a K7 minus
one link as a minor do not allow for perfect resilience.

B. Possibility Results

We now provide positive results on when perfect resilience
is achievable. Interestingly, as we will see, we can almost
perfectly complement above impossibility results, by providing
algorithms for graphs characterized by less dense minors. We
start by giving an algorithm for the K5 and its subgraphs:

Theorem 8. For all graphs with at most five nodes Algo-
rithm 1 describes a forwarding pattern matching on the source
guaranteeing perfect resilience.

Proof: We proceed by showing that packets routed with
Algorithm 1 reach the destination for all possible distances
between source and destination after failures.

By showing it for K5, we directly show correctness for all
minors of K5 as well, due to [2, Corollary 4.2].

If the distance between source and destination is one, Line
2 of the algorithm ensures the packet arrives at its destination
directly.

If the distance is two, there are four non-isomorphic
candidate graphs on which a packet could visit all other
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nodes before visiting t, G1, G2, G3, G4 with V = {s, t, x, y, z}
and link sets E1 = {(x, y), (y, s), (s, z), (z, t)}, E2 =
E1 ∪ {(x, s)}, E3 = {(x, s), (s, y), (y, z), (z, t), (s, z)} and
E4 = {(s, x), (s, y), (s, z), (z, t))}, after removing the failed
links respectively. Depending on how we order the IDs for
x, y, z for E1, the algorithm may first explore x before returning
to s but it will definitely visit z via y and thus find t. For E2,
the algorithm will head straight towards t if z has the lowest
identifier. If y is the lowest identifier, the algorithm will visit
the nodes in the order s, y, x, s, z, t regardless of the order of
the identifiers of x, y. For E3, the sequence of nodes visited
starts with s, x, s if x has the lowest identifier, followed by
y, z, t if y = v and z = w or z, t otherwise. If y has the lowest
identifier the sequence is s, y, z, t, if z = y it is s, z, t. For E4

the algorithm guarantees that all neighbors of the source are
visited if the previous ones did not connect to the destination
as the nodes will send the message back if they cannot forward
it to t. Note that for subgraphs of G1, G2, G3, G4 where (s, x)
is missing and/or (s, y) is missing from G4 the destination is
reached in at most the same number of steps as well by the
same line of arguments, as some detours will not be taken.

If the distance is three, six non-isomorphic candidate graphs
exist where a packet could visit all other nodes before
visiting t, G′

1, G
′
2, G

′
3, G

′
4, G

′
5, G

′
6 with V = {s, t, x, y, z}

and link sets E′
1 = {(x, s), (s, y), (y, z), (z, t)}, E′

2 =
E1 ∪ {(x, y)}, E′

3 = {(s, x), (x, y), (y, t), (z, y)}, E′
4 =

{(s, x), (x, y), (y, t), (z, x))}, E′
5 = E4 ∪ {(z, y)}, and E′

6 =
E5 ∪ {(z, t)}, after removing failed link respectively. For E′

1

the algorithm will forward packets on its direct path to the
destination if y = u. Otherwise there might be a detour to
x first. For E′

2, if x = u then the sequence of nodes visited
is s, x, y, z, t, if y = u, x = v then it is s, y, x, s, x, y, z, t, if
y = u, z = v or z = u, y = v then no detour is taken and it the
remaining case with z = u, x = v the path used Is s, x, y, z, t.
For E′

3, the path taken is s, x, y, t and for E4 a visit to z might
be included but no loop introduced. For E′

5, z is visited if
z < y leading to a path of s, x, z, y, t and s, x, y, t otherwise.
In the last graph E′

6, visiting z would lead to a shortcut to t
and in both cases t is reached. Note that for subgraphs of G′

1

without (s, x) and G′
3, G

′
4 without link to z the destination is

reached in at most the same number of steps as well by the
same line of arguments, as some detours will not be taken.

If the distance is four, the nodes form a chain and the
algorithm ensures that all nodes forward the packet until it
reaches it destination.
We obtain further positive results for complete bipartite graphs
and refer to our technical report [47] for the proof details.

Theorem 9. There exists a forwarding pattern matching on
the source and guaranteeing perfect resilience for the complete
bipartite graph with three nodes in each part, and its minors.

V. PERFECT RESILIENCE WITHOUT SOURCE

Given our characterization of when perfect resilience is
possible in a model where both the source and the destination
of a packet can be matched, we now continue charting the

landscape of perfect resilience by considering a model where
forwarding rules can only depend on the destination. We are
able to provide an almost perfect characterization with respect
to complete and complete bipartite graphs.

A. Impossibility Results

Foerster et al. [2] showed that K5 and K3,3 do not allow
for perfect resilience in the destination-based model, i.e.,
Ap(K5, t) = ∅ and Ap(K3,3, t) = ∅. Their proof construction
for K5 starts at some node v ̸= t, where the link (v, t) is
removed, leaving all other links incident to v intact. In their
construction, all nodes, except the one node connected to t,
must route in a cyclic permutation, a fact retained even if the
link (v, t) never existed. Hence:

Theorem 10. A complete graph with five nodes, minus one
link, K−1

5 , does not allow for a perfectly resilient forwarding
pattern, i.e., Ap(K

−1
5 , t) = ∅.

For K3,3, Foerster et al. [2] start their construction on a
node v which is in the same part as the destination, and
hence there was no link (v, t) to begin with. However, we
can observe that in their construction, the permanent loop also
traverses nodes of the other part (without t) and the routing
behavior remains unchanged if we remove one link incident
to t (cyclic permutations are enforced for all non-neighbors of
the destination).

Theorem 11. A complete bipartite graph with three nodes in
each part, minus one link, K−1

3,3 , does not allow for a perfectly
resilient forwarding pattern, i.e., Ap(K

−1
3,3 , t) = ∅.

Whereas K5 and K3,3 are not planar, both K−1
5 and K−1

3,3

are planar [48]. We note that K−1
5 is a minor of the planar

7-node construction to show impossibility in [2, Theorem 5.3]
and hence Theorem 10 improves their planar result with a
smaller number of link and nodes.

1) Generalization of Impossibility: Minor Relationships:
It was previously shown that if a graph G allows for perfect
resiliency in destination-based routing, so do all minors of
G [2, §4]. Hence all graphs containing a K3,3 or a K5 minus
one link as a minor do not allow for perfect resilience.

B. Possibility Results

1) One Link Less Gives Perfect Resilience: We next show
that the results from §V-A are tight in the sense that removing
one additional link from these graphs allows for perfect
resilience. We will need the following result:

Corollary 5 (Corollary 6.2 [2]). Let G′ = (V \ {t}, E) be
outerplanar. Then G = (V,E) allows for perfectly resilient
forwarding patterns πt without the source.

We start with K−2
5 in Theorem 12 and K−2

3,3 in Theorem 13.

Theorem 12. A complete graph with five nodes, minus two
links, K−2

5 , allows for a perfectly resilient forwarding pattern
πt, as well as for all minors of K−2

5 .
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@ v1 ⊥: v2, v3, v4 v3 : v2, v4, v3 v4 : v2, v3, v4 (v2: when we visit both we are done)
@ v2 ⊥: v1, v3, v4 v3 : v1, v4, v3 v4 : v1, v3, v4 (v1: when we visit both we are done)
@ v3 ⊥: v2, v1, v4 v1 : v2, v4, v1 v2 : v1, v4, v2 v4 : v1, v2, v4
@ v4 ⊥: v1, v2, v4 v1 : v2, v3, v1 v2 : v1, v3, v2 v3 : v2, v1, v3

Fig. 4. Routing table to visit both neighbors of t in Fig. 5 under perfect resilience.

v1

v2

v3

v4

t

Fig. 5. K5 with 2 edges incident to t removed.

Proof: Let the nodes of K−2
5 be v1, v2, v3, v4, v5 = t. We

proceed by case distinction. If t has one or zero links removed,
then the remaining 4-node graph is a proper subgraph of K4 and
hence is outerplanar, i.e., Corollary 5 yields perfect resilience.

If t has two links removed, then let w.l.o.g. v1, v2 be the
neighbors of t. Note that the graph without t is a K4 and
hence is not outerplanar. In order to obtain perfect resilience,
we need to visit, from the starting node v, all of v1, v2 being
in the same component as v, which we can obtain by using the
following forwarding pattern, where we state in the table in
Fig. 4 for each inport in which order outports are considered
(using the table notation introduced in the proof of Theorem 9):

The correctness of our algorithm follows by careful case
distinction, showing that v1 or v2 will be visited. Lastly, the
proof extends to all minors of K−2

5 due to [2, Thm 4.3].

Theorem 13. A complete bipartite graph with three nodes
in each part, minus two links, K−2

3,3 , allows for a perfectly
resilient forwarding pattern πt, as well as for all minors of
K−2

3,3 .

Proof: Denote nodes of the first part as v1, v2, v3 = t and
second part as v4, v5, v6. If v3 = t has zero or one link removed,
then the remaining 5-node graph is a proper subgraph of K2,3

and hence is outerplanar, i.e., we obtain perfect resilience with
Corollary 5. If t has two link removed, then there is only one
node connected to t, w.l.o.g. v6, and the graph without t, v6 is a
K2,2, which is outerplanar. We hence obtain perfect resilience
by first routing to v6 with Corollary 5 and then to t. The proof
extends to all minors of K−2

3,3 [2, Theorem 4.3].

VI. RESILIENCE WITH FEW FAILURES

We now study failover routing given a promise that only a
small fraction of link are removed. It should be noted that in
general we can use any constant-sized graph that does not have
a perfectly resilient forwarding pattern, and pad it with extra
unhelpful link (and nodes) such that the fraction of link that
fail can be made arbitrarily small. Therefore the general case
is uninteresting, and we must consider specific graph classes.

We consider routing with source and destination information
on complete graphs and complete bipartite graphs. In this
setting, there are no perfectly resilient forwarding patterns
for K7 and K4,4 (§IV-A). We use a simulation argument to
extend these results to graphs of any size: complete graphs and
complete bipartite graphs do not have forwarding patterns even
if only O(

√
|E|) links fail. In the context of routing without

source information slightly better constants can be achieved
using the constructions of Foerster et al. [2].

Theorem 14. For every forwarding pattern on the complete
graph Kn on n ≥ 8 nodes, there is a set of link failures of
size at most 6n− 33 such that the forwarding pattern fails.

Proof: Assume that the claim does not hold for some n.
Then there must exist a forwarding pattern πs,t that succeeds
even if any r(n) links fail. We simulate πs,t on the complete
graph K7 and reach a contradiction with the impossibility of
perfectly resilient routing on K7 (§IV-A). Given K7, construct
a virtual Kn by adding n− 7 virtual nodes and virtual links
between all pairs of nodes. We construct a failure pattern for
Kn that contains the real failure pattern on K7 as a subset, and
simulate πs,t. The failure set F on Kn is defined as follows.

1) Fail all links between the non-destination nodes of K7

and the virtual nodes (6(n− 8) links in total).
2) Fail all links that can fail in K7 (≤ 15 links by

Corollary 3).
We do not need to fail any additional links incident to the
destination. Each node v in K7 can use the forwarding function
πs,t
v as if it were on Kn. Since only the destination is connected

to the virtual nodes, the packet will never leave the real network
K7. Since we assumed πs,t forwards correctly on Kn, it must
also forward correctly on this particular failure set. Therefore it
forwards correctly on K7, a contradiction. In total, the number
of links in F is 6(n− 8) + 15 = 6n− 33.

The result is asymptotically the best possible. For example
Foerster et al. showed that forwarding with source and
destination is always possible if the distance between s and
t in G \ F is at most 2 [2, Theorem 6.1]. This holds on the
complete graph when |F | ≤ n− 2.

We can give a similar construction for complete bipartite
graphs. The proof is a simulation argument based on the
impossibility of the K4,4 (§IV-A):

Theorem 15. For every forwarding pattern on the complete
bipartite graph Ka,b, where a ≥ b ≥ 4, there is a set of link
failures of size 3a+ 4b− 21 s.t. the forwarding pattern fails.

Proof: Consider an instance of K4,4 such that the node that
has the packet initially is on the same side as the destination.
Create the virtual graph Ka,b by adding a+ b− 8 nodes and
the corresponding links. If a > b, we let the larger part be on
the opposite side of the source and the destination.

The failure set F is the union of the following sets.
1) The real failure set of K4,4 (in total 11 links by Cor. 4).
2) All links from the non-destination nodes of K4,4 to the

virtual nodes (in total 3(a− 4) + 4(b− 4) links).
Again we can simulate the forwarding pattern πs,t for Ka,b

in K4,4 since the packet will never enter the virtual part of the
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graph. Assuming the packet is forwarded correctly on Ka,b, it
is forwarded to the destination on the subgraph that corresponds
to K4,4, a contradiction (§IV-A). The total size of the failure
set F is at most 3a+ 4b− 21.

Chiesa et al. [49, §B.2, B.3] showed how to survive k−1 link
failures in k-connected complete and complete bipartite graphs.
This implies that our result is asymptotically best possible on
balanced complete bipartite graphs.

We further briefly investigate the transfer of resilience under
few failures to subgraphs and minors. More precisely, if a
graph G allows for a k-resilient forwarding pattern, do the
subgraphs (respectively, minors) of G then also allow for a
k-resilient forwarding pattern? This property does not hold
in general. We know that, e.g., the K100 is 99-connected and
thus 98-resilient [49, §B.2]. On the other hand, we know that
K7 is not perfectly resilient (§IV-A), and K7 is a subgraph of
the K100. However, |E(K7)| < 98, and hence 98-resilience is
equivalent to perfect resilience on K7, i.e., the 98-resilience
of K100 does not carry over to its subgraphs. An analogous
statement can be made, e.g., with K100,100, applying [49, §B.3]
and impossibility of perfect resilience on K4,4 (§IV-A), As
subgraphs are also minors, we hence answer the question in
the negative for both complete and complete bipartite graphs.

VII. FROM ROUTING TO TOURING: PERFECT RESILIENCE
WITHOUT SOURCE AND DESTINATION

While we have so far focused on the standard routing
problem, namely delivering a packet from the source to the
destination, in this section, we extend our investigations to
a fundamental touring problem: Can local rerouting rules be
defined which ensure that a packet will visit all nodes in a
graph, even under failures? At first this problem seems quite
different to normal routing, but touring and routing are deeply
connected on complete graphs: in order to reach the destination
t, we need to tour all of its neighbors, as an adversary could
disconnect t from all neighbors except one.

Our results match the above intuition: as we will show in
this section, the borders of (im)possibility move by exactly
one node between touring and destination-based routing on
complete graphs. What’s more, we will provide a complete
classification of touring under perfect resilience in Corollary 6.

Beyond the above theoretical motivation, touring can also
help in a practical context, by saving expensive routing table
space: we deploy the same routing rules, no matter which
source or destination a packet has. First, for destination-based
routing, the packet will eventually reach the destination, and
can then be removed from the network. Second, if we also
have the source, we can use touring to implement a broadcast
or flooding protocol. Once the source gets the packet again, it
checks if the next outport is the same outport as for ⊥: if yes,
the packet has toured the whole network (assuming resilience),
and if not, it is still underway in its tour.

A. Complete Touring Characterization in Perfect Resilience

We will now present a complete characterization of touring.
Let us first introduce some terminology. We will denote a

forwarding pattern π∀ as k-resilient if for all G and all F
where |F | ≤ k the forwarding pattern π∀ routes the packet
from all v ∈ V to all nodes v′ in the connected component of
v in G \ F and then back to v. We call a forwarding pattern
π∀ perfectly resilient if it is ∞-resilient: all nodes are visited
in the tour through the connected component. Let Ap(G,∀) be
the set of such perfectly resilient touring patterns (algorithms).

We can now state our main technical result of this section,
yielding a complete classification in Corollary 6.

Theorem 16. If G is not outerplanar, then it does not support
a perfectly resilient touring pattern π∀.

It follows from the arguments of Foerster et al. [2, §6.2]
that every outerplanar graph can be toured, by providing a
planar embedding and routing according to the right-hand rule,
starting on the outer face. In combination with Theorem 16
we hence obtain a complete classification of the possibility of
touring all nodes:

Corollary 6. A graph G allows for a perfectly resilient touring
pattern if and only if G is outerplanar.

It remains to prove Theorem 16. To this end, we first state
the auxiliary Lemma 1 which we use to show that K4 and
K2,3 do not allow for a perfectly resilient forwarding pattern,
its correctness follows analogously as for [2, Lemma 3.1]:

Lemma 1. Let G = (V,E) with |E| > 0 and let A ∈ Ap(G,∀),
i.e., A is a perfectly resilient touring pattern. For all F holds:
every node routes under A according to a cyclic permutation
of all its neighbors, no matter the failure set F .

As K4 and K2,3 are the forbidden minors of outerplanar
graphs, we can then show that no non-outerplanar graph can
be toured under perfect resilience. We next study the forbidden
minors of outerplanar graphs, as first described by Chartrand
and Harary [50, Thm. 1], which we restate as Lemma 2:

Lemma 2. A graph G is outerplanar if and only if it contains
no K4 or K2,3 as a minor.

The arguments for the next lemmas follow analogously as
for Theorems 10 and 11, leveraging the fact that in order to
reach the destination therein, all other nodes need to be visited.

Lemma 3. The complete graph K4 with four nodes does not
support a perfectly resilient touring pattern π∀.

Lemma 4. The complete bipartite graph K2,3 with five nodes,
two in one part and three in the other, does not support a
perfectly resilient touring pattern π∀.

Foerster et al. [2, §4] showed that perfect resilience for the
destination-based model on a graph G is also valid for minors
G′ of G. Their technique relies on taking a perfectly resilient
forwarding pattern and showing that for the two fundamental
operations in the minor relationship, namely 1) contracting
two neighboring nodes and 2)subsetting (taking a subgraph),
that the pattern can be naturally adapted to stay perfectly
resilient on the obtained minor. Note that a forwarding pattern
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v1

v2 v3

v4

v5

v6v7

Fig. 6. Detailed view of the Netrail topology. This topology is not outerplanar:
merging nodes v3 and v4 allows to realize the forbidden K2,3 minor between
v1, v2 and v6, v7, v34 and the corresponding red edges. Hence, Touring is
marked as impossible. However, for the destination- and source-destination-
based settings, the topology is marked as sometimes: e.g., when considering
v6 as the destination, the remaining graph is outerplanar. Hence the neighbors
of the destination can be toured.

can also be understood as a port mapping, where packets are
forwarded from an inport to an outport, independent of source
or destination, and hence the following holds:

Corollary 7. Given two graphs G and G′ such that G′

is a minor of G, it holds that Ap(G,∀) ̸= ∅ implies that
Ap(G

′,∀) ̸= ∅: if G permits a perfectly resilient touring
pattern, so do its minors.

Combining Lemma 2, Lemma 3, Lemma 4, and Corollary 7,
we obtain the desired proof of Theorem 16:

Proof of Theorem 16.: Lemma 2 states that outerplanar
graphs are characterized by not having a K4 or K2,3 as a
minor. Moreover, K4 and K2,3 do not allow perfectly resilient
touring schemes according to Lemmas 3 and 4. As perfect
touring resiliency transfers to graph minors, due to Corollary 7,
the theorem statement holds.

a) k-Resilient Touring: As touring is limited to outer-
planar graphs, only very small complete (K≤3) and complete
bipartite graphs (K2,2 and K1,n) can be toured perfectly. We
thus also investigate touring under k-resilience:

Theorem 17. Let k ∈ N and let G = (V,E) be a 2k-connected
complete or complete bipartite graph. There is a forwarding
pattern π∀ s.t. G can be toured under every F with |F | ≤ k−1.

Proof: A 2k-connected complete or complete bipartite
graph contains k link-disjoint Hamiltonian cycles, following
the results of Walecki [51] and Laskar and Auerbach [52]. We
generate routing rules as follows, inspired by Chiesa et al. [49,
§B.6]: we enumerate the k Hamiltonian cycles as H1, . . . ,Hk.
Starting with H1, the forwarding pattern routes along Hi until
a failure is encountered in the next link of Hi at some node
v, upon which we switch to the next Hj , where j > i is
chosen to be minimum at v (the current Hamiltonian cycle can
be identified based in the incoming port). Hence, after k − 1
failures, at least one Hamiltonian cycle will be without failures
(there are k such cycles), and upon entering this Hamiltonian
cycle in our routing, we continuously tour all nodes.

Planar
Non Planar

Outerplanar
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Touring Destination Only Source−Dest.
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Possibility: Impossible Unknown Sometimes Possible

Fig. 7. Perfect resilience classification of Internet Topology Zoo [53] instances.

VIII. TOPOLOGY ZOO CASE STUDY

In order to better understand the possibility of perfect
resilience on real-world networks, we performed a case study
on 260 networks from the Internet Topology Zoo [53]. This
data set collects information provided by network operators.
The networks in this data set have between 3 and 754
nodes and between 4 and 895 links. We used SageMath
9.34 to compute if a network is outerplanar or (non-)-planar,
respectively minorminer 0.2.65 to compute if it contains
a forbidden minor for the respective routing model: K−1

5 or
K−1

3,3 for destination-based routing and K−1
7 or K−1

4,4 for source-
destination based routing. The code for this analysis has been
opensourced.6 In case a forbidden minor was found, or if the
graph was not outerplanar for touring, we marked the graph
as impossible w.r.t. perfect resilience—on the other hand, if
the network was outerplanar, we marked it as possible. From
the remaining graphs, if there exists a forwarding pattern for a
subset of destinations7, we marked them as sometimes8, with
the remaining networks marked as unknown.

The results are shown in Fig. 7. Even though minorminer
relies on a heuristic to solve the computationally hard minor
search problem, most instances can be classified quickly.

In general, we see that roughly one third of all topologies
allow for perfect resilience. Regarding impossibility, the
remaining networks cannot be toured under perfect resilience,
whereas for the other two routing models 42.5% and 2.7%
are impossible, with 1.1% and 31.8% being unknown, and
23.4% and 32.6% allow forwarding patterns for some desti-
nations, for routing algorithms matching on destination and
source-destination, respectively. For the topologies marked as
sometimes, on average 21.3% of the destinations are reaching
perfect resilience.

Fig. 8 presents a detailed perspective on those results:
sparse, tree-like topologies all support perfect resilience. As
density |E|/|V | increases, perfect resilience becomes only

4 https://www.sagemath.org/ 5 https://github.com/dwavesystems/minorminer
6 https://github.com/yvonneanne/dsn22 7 I.e, if the graph is outerplanar
after removing the destination, because then we can tour all neighbors of the
destination. 8 We give an example in Fig. 6.
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Model Subgraph Minor Possible Impossible
r-Tolerance: r > 1 [§II] Yes [§III-B] No [§III-C] K2r+1 / K2r−1,2r−1 [§III-C] K5r+3 [§III-B]

Bounded # link failures f [§VI] No [§VI] No [§VI] Kn : f < n − 1 [49, §B.2]
Ka,b : f < min{a, b} − 1 [49, §B.3]

Kn, n > 8 : f ≥ 6n − 33 [§VI]
Ka,b, a, b ≥ 4 : f ≥ a+ 4b− 21 [§VI]

TABLE I
LANDSCAPE OF FEASIBILITY OF LOCAL FAST REROUTING IN DIFFERENT FAILURE MODELS.

Destination Only Source−Destination

0 25 50 75 0 25 50 75

0.5

1.0

1.5
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Number of Nodes: n

D
en
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ty

: |
E|

/n

Possibility: Possible Sometimes Unknown Impossible

Fig. 8. Detailed view of Internet Topology Zoo [53] instances. Each topology
is located by its size (n, x-axis) and its density (|E|/n, y-axis). For readability,
large n > 100 and dense |E|/n > 3 outlier topologies are omitted (in total
12 out of 260 topologies are omitted).

possible for some nodes (sometimes). The densest topologies
generally do not support perfect resilience. For routing with
source and destination the lowest density with guaranteed
impossibility is considerably higher than for destination only
routing. Interestingly, the impact of density has exceptions,
for instance with sparse topologies classified as impossible
and dense topologies classified as sometimes, confirming the
importance of the local structure within each topology on
enabling perfect resilience.

Moreover, 55.8% of all topologies are planar but not
outerplanar. In this context the seemingly small jump in
impossibility classification for destination-based routing, from
K5 or K3,3 [2] to K−1

5 or K−1
3,3 in this work, hence allows us

to classify 31.3% of the Topology Zoo instances as planar and
impossible—previous work cannot show the impossibility of
perfect resilience for them.

This implies that our classification measures really lie at the
frontiers of (im-)possibility for the Topology Zoo data set and
our new results let us classify a lot more real-world topologies.

Our analysis and code can also be used by future research
to check for what further networks it would be fruitful to
look for a perfectly resilient routing scheme, respectively if
it is better to invest time in heuristics that work in many but
not all cases. If so far a destination-based routing algorithm
has been used the analysis can reveal if a source-destination-
based routing scheme can improve the resilience of the routing
scheme. Furthermore, if network usage data is available, the
most important source-destination pairs can be analysed in
more detail efficiently even for very large topologies.

Density

Outerplanar Planar non-Planar
K1 K2 K3 K4 K5 K6 K7

K2,3 K3,3 K4,4Header info

Touring

[23, §6.2] §7.1

Destination only K5/3,3 − 2e

§5.2

K5/3,3 − e

§5.1

Source and Destination K5/3,3

§4.2

K7/4,4 − e

§4.1

Positive instances transfered
to subgraphs/minors

Negative instances transfered
to supergraphs/“majors”

Fig. 9. Feasibility landscape of local fast rerouting in different routing models.

IX. CONCLUSION

Motivated by increasingly stringent dependability require-
ments, e.g., of merging 6G communication networks, we
revisited the algorithmic problem of realizing highly resilient
fast rerouting in the data plane. On the negative side, we proved
that providing resilience locally can be impossible, even in
scenarios where the network remains highly connected after
link failures. On the positive side, we presented improved
characterizations of resilience in various different models,
and devised novel algorithms accordingly. We summarize our
classification results in Table I and Figure 9.

While our work presents a fairly complete landscape of the
achievable perfect resilience, there remain several interesting
directions for future research. In particular, it would be
interesting to chart a similar landscape for the practically
relevant scenarios in which links failures are random, or where
the routing rules themselves can be subject to randomization.
It would further be interesting to account for additional aspects
which influence dependability in practice, and e.g., optimize
the “hazard value” [54], [55] of the network more generally.
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