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Abstract. Payment channel networks (PCNs) such as the Lightning
Network offer an appealing solution to the scalability problem faced
by many cryptocurrencies operating on a blockchain such as Bitcoin.
However, PCNs also inherit the stringent dependability requirements of
blockchain. In particular, in order to mitigate liquidity bottlenecks as
well as on-path attacks, it is important that payment channel networks
maintain a high degree of decentralization. Motivated by this require-
ment, we conduct an empirical centrality analysis of the popular Light-
ning Network, and in particular, the betweenness centrality distribution
of the routing system. Based on our extensive data set (using several mil-
lions of channel update messages), we implemented a TimeMachine tool
which enables us to study the network evolution over time. We find that
although the network is generally fairly decentralized, a small number of
nodes can attract a significant fraction of the transactions, introducing
skew. Furthermore, our analysis suggests that over the last two years,
the centrality has increased significantly, e.g., the inequality (measured
by the Gini index) has increased by more than 10%.

1 Introduction

Blockchain, the technology which is currently revamping the financial sector
and which underlies cryptocurrencies such as Bitcoin and Ethereum, enables
mistrusting entities to cooperate without involving a trusted third party. How-
ever, with their quickly growing popularity, blockchain networks face a scalability
problem, and the requirement of performing repeated global consensus protocol
is known to limit the achievable transactions rate.

Payment channel networks (PCNs) are a promising solution to mitigate the
scalability issue, by allowing users to perform transactions off-chain. In partic-
ular, in a PCN, two users can establish so-called payment channels among each
other, in a peer-to-peer fashion. The set of channels can then be seen as a graph,
in which users are represented as nodes and channels are represented as edges.
Payments can then also be routed in a multi-hop manner across these channels
(typically using source routing), with forwarding users typically charging a small



2 P. Zabka et al.

fee. Nodes can discover the cheapest routes using a gossip mechanism. The scal-
ability benefit comes from the fact that it is only when a channel is opened or
closed, that changes have to be made to the blockchain.

By the nature of the service they provide, PCNs need to meet stringent
dependability requirements. Interestingly, while over the last years, several in-
teresting approaches to design and operate payment channel networks in an
efficient and reliable manner have been proposed in the literature, relatively
little is known about the properties of the actually deployed networks today.

We in this paper are particularly interested in the level of decentraliza-
tion provided by PCNs: decentralization is generally one of the key features
of blockchain, and also naturally required from off-chain solutions.

Indeed, it has recently been shown that skews in the routing system (e.g., due
to exploits of the payment mechanism), can significantly harm the network per-
formance, by depleting channels [1], or even lead to denial-of-service attacks [2]
and privacy [3, 4] and other security issues [5]. In order to gain a detailed un-
derstanding of Lightning, the most popular PCN, we monitored the network for
several years, collecting millions of channel update and gossiping messages. To
shed light on the network evolution, we further implemented tools which allow
us to reconstruct the network at previous time stamps. In this paper, we present
the main results of our study of the Lightning Network.

1.1 Our Contributions

Fig. 1. Top 10% control over routes

Motivated by the increasing popularity
of payment channel networks and the re-
sulting performance and dependability re-
quirements, we report on an extensive em-
pirical study of the most popular PCN,
Lightning. In particular, we study to
which extent Lightning fulfills the premise
of decentralized transaction routing.

We find that there is a trend of in-
creasing centralization and a high level of
inequality, where a small portion of the
nodes participate on most transaction routes. We show that the level of cen-
trality also depends on the transaction size, and we take a look at some of the
highest ranked nodes according to centrality. We uncover that a fair share of
nodes remained at the top over the examined period. To just give one example,
our analysis shows that the top 10% of all nodes control a vast majority of all
transaction routes, and that the controlled share increases over time, see Fig. 1.

For our study, we collected significant data from the live Lightning Network,
over a time span of almost two years. This data includes over 400k node an-
nouncement messages, over 1m channel announcement messages, and over 6m
channel update messages. We further developed TimeMachine, a tool which al-
lows us to reconstruct the network at desired moments in time. We accomplish
this with the help of the above mentioned gossip mechanism.
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As a contribution to the research community, in order to ensure reproducibil-
ity as well as to support future research in this area, we make available all our
code and experimental artifacts [6] together with this paper.

1.2 Related Work

Over the last years, many interesting approaches to design and operate payment
channel networks have been proposed in the literature, often accounting for
dependability aspects [7–12], and we refer the reader to [13–15] for an overview.

In this paper, we are particularly interested in issues related to centralization,
a topic which has recently also received much attention in the context of Bitcoin
in general [16–18]. In the context of PCNs, it has been shown that centralization
of the routing system can harm performance [2,19], liquidity [1,20], security [5],
and privacy aspects [3,4,21,22], especially when considering on-path adversaries.

Interestingly, relatively little is known about the empirical properties of de-
ployed payment channel networks. The Lightning Network’s topology has been
analyzed by Seres et al. [23]. Their work studies the robustness of the network
against random failures of nodes as well as attacks targeting nodes. A similar,
but more in detail work has been carried out by Rohrer et al. [24]. Martinazzi
et al. [25] analyzed the evolution of the Lightning Network over a period of one
year, beginning on its launch on the Bitcoin mainnet in January 2018. Their
work focuses on the topological robustness of the network, e.g., against attacks,
where they also detect a high influence of a few nodes on the network. Next,
a large scale empirical analysis on the client and geographical classification of
nodes is performed by Zabka et al. [26, 27], see also Mizrahi et al. [28]. Related
to this, Scellato et al. [29] study how geographic distance affects social ties in a
social network and Mislove et al. [30] examine geographical, gender and racial
aspects of Twitter users to the U.S. population.

1.3 Organization

Organization. The remainder of this paper is organized as follows. Section 2
introduces some preliminaries and Section 3 describes our methodology, followed
by the centrality analysis in Section 4. We subsequently conclude in Section 5.

2 Preliminaries

We now introduce some of the necessary basics of the Lightning Networks and
some specific preliminaries for the remainder of the paper.

The Lightning Network. The Lightning Network is an off-chain solution to
improve the scalability of cryptocurrencies such as Bitcoin. The network can be
accessed via three clients, namely LND [31] implemented in Go, C-Lightning [32]
implemented in C and Eclair [33] implemented in Scala. However, with an usage
of more than 85%, LND is currently by far the most popular client [27]. The
Lightning Network users are able to create bidirectional connections to other
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users, called channels. These channels can be used to send instant payments
between two users, which do not need to be necessarily directly connected. If
a payment is routed across multiple users, the users in between the route may
demand fees for the routing process. The Lightning Network does not operate on
the blockchain itself, however the first transaction called the funding transaction
to create a channel needs to be propagated onto the blockchain. The same goes
for the last transaction or closing transaction to end the connection between two
users. All intermediary transactions are not propagated onto the blockchain and
therefore can be processed in a much faster fashion.
Gossip Messages. As the name implies, gossip messages are propagated through
the whole network to either announce a node or channel creation or an update.
Therefore, all participants have an contemporary view of the network. This mech-
anism is especially important in the case that a node wants to route a payment
to a node it is not directly connected with. In the following we will take a more
in detail look at the three most important gossip messages, which are specified
in the Basics of the Lightning Technology (BOLT) [?]:

– node announcement message: This message allows nodes to inform other
participants about extra data associated with it, besides the node ID. It
contains data such as the IP address, color, alias and timestamp as well as
information for opting into higher level protocols.

– channel announcement message: If a channel is created between two
nodes this message is propagated through the network. It contains infor-
mation such as an short channel ID, which is an unique identifier for the
channel, as well as both node IDs.

– channel update message: A channel is practically not usable until both
sides announce their channel parameters. These parameters are announced
in this message. As the Lightning Network is directed, both channel partici-
pants have to send a message. The parameters included in this message are
among other things used to calculate the routing fees. Every time one side
updates its channel parameters, this message is broadcast in the network.

Routing Fees. In the Lightning Network nodes along a routed path take a
small fee for forwarding transactions. The parameters necessary for the calcula-
tion are fee base msat and fee proportional millionths which can be found in the
channel update message. Hereby fee base msat denotes the constant fee a node
will charge for a transfer and fee proportional millionths is the amount a node
will charge for each transferred satoshi over their channel. Fees are calculated as
follows, where transferred amount denotes the transaction in millisatoshi:

fee base msat+(transferred amount∗fee proportional millionths/1 000 000)

Betweenness Centrality. The betweenness centrality represents a measure in
a network based on shortest paths, a node’s centrality is based on how many such
paths traverse it. Formally, the betweenness centrality cB of the nodes v ∈ V
is cB(v) =

∑
s,t∈V σ(s, t|v)/σ(s, t), with σ(s, t) [σ(s, t|v)] as # shortest st-paths

[through v, v 6= s, t]. If s = t, σ(s, t) = 1, and if v ∈ s, t, σ(s, t|v) = 0 [34, 35].
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For every node pair in a connected unweighted graph, there exists at least one
shortest path between these nodes such that the number of edges is minimized.
For weighted graphs such as the Lightning Network, where channel routing fees
represent edge weights, the sum of the edge weights is minimized.

Among several interesting alternatives [36,37], we focus on betweenness cen-
trality as our main centrality measurement. Nodes with high betweenness cen-
trality have a considerable amount of influence on a network by means of in-
formation control, since most of the network traffic will pass though them—in
contrast to other centrality measures which represent a more local view, e.g.,
degree centrality, which counts the numbers of edges incident to a node.

A high betweenness centrality is a particular concern as nodes choose rout-
ing paths with the overall cheapest fees, and a skewed centrality indicates that
routing paths are concentrated to a small subset of nodes. A skewed centrality
may not only quickly deplete payment channels, but also makes the network vul-
nerable: many attacks recently reported in the literature are based on on-path
adversaries [24,28]. Getting a significant amount of traffic can also raise privacy
concerns, e.g., during route discovery.

3 Methodology

We next introduce the methods to obtain and process our data set.
TimeMachine. The Lightning Network TimeMachine [38] is a tool written
in Python, which reconstructs the state at a prior point in time by replaying
gathered gossip messages up to that point in time. We have deployed a number
of C-Lightning nodes that collect and archive these messages, which are then
deduplicated and ordered by their timestamp, in order to allow the TimeMachine
to replay them in the correct order, and terminate once the desired point in
time has been reached, leaving the view of the network close to what the public
network would have looked like at that time. We utilized the TimeMachine to
rebuild the network at seven different points in time, covering a time span of two
years ranging from 01 Apr. 2019 to 01 Jan. 2021. We then used the Python library
NetworkX [34] to further analyze the networks in regard to the betweenness
distribution in different timestamps. With the help of our TimeMachine we were
able to reconstruct the network as it was at the timestamps mentioned in Table
1. From now on we will reference the timestamps as T1 - T7.

Table 1. Lightning Network Snapshots

Abbr. Timestamp Date # Nodes
T1 1554112800 01 Apr. 2019 1362
T2 1564653600 01 Aug. 2019 4589
T3 1572606000 01 Nov. 2019 4699
T4 1585735200 01 Apr. 2020 5230
T5 1596276000 01 Aug. 2020 5905
T6 1606820400 01 Dec. 2020 6331
T7 1609498800 01 Jan. 2021 6629

Data Set. Our data was col-
lected with help of C-Lightning
nodes, which synchronize their view
of the network topology by listen-
ing and exchanging gossip messages.
Internally C-Lightning will dedu-
plicate messages, discard outdated
node announcements and channel-
updates, and then apply them to the

internal view. In order to persist the view across restarts, the node also writes the
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raw messages, along some internal messages, to a file called the gossip store. The
node compacts the gossip store file from time to time in order to limit its growth.
Compaction consists of rewriting the file, skipping messages that have been su-
perceded in the meantime. Our data set is comprised of the three gossip messages
discussed in the previous section. Our nodes have recorded more than 400 000
node announcement messages, more than 1 000 000 channel announcement mes-
sages, and over 6 400 000 million channel update messages.

4 Centrality Analysis

This section reports our main results from the centrality analysis. We performed
a detailed analysis where we measured the betweenness centrality, a major cen-
trality measure, of the Lightning Network at different points in time and observed
how it has developed over almost two years. More precisely, we took seven snap-
shots of the network, dating from 01 Apr. 2019 to 01 Jan. 2021. Based on the
formula for calculating routing fees introduced in Section 2 we calculated the be-
tweenness of each node based on three different realistic transaction sizes namely
10 000 000 Millisatoshi (0.0001 BTC), 1 000 000 000 Millisatoshi (0.01 BTC) and
10 000 000 000 Millisatoshi (0.1 BTC). The idea of calculating the betweenness
with different transaction sizes was if we could detect significant changes.

4.1 Historic Betweenness Analysis of the Lightning Network

Evaluating the Lightning Network at different points in time in terms of the
betweenness centrality can provide us with insights which allow us to better
comprehend how it has developed until now e.g. has it become more centralized
or the opposite and also make predictions in which direction it may develop in
the future. We start by we examining our latest snapshot first.

Timestamp T7 We decided to use a logarithmic scale on the x-axis to better
display the long range of centrality values (1 - 7 500 000). Further, we do not
include nodes with a centrality value of 0, as they merely represent leafs in the
graph. Also the amount of leaf nodes is astonishing high, up to 5520 nodes out
of 6630 in T7, and would distort the graph.

In Fig. 2 (left) we can see that transaction size has indeed an influence on
a node’s centrality if the transaction amount is low or high enough. In the case
of 0.1 BTC respectively 0.01 BTC there is almost no change in the centrality
distribution among the nodes, however, in the case of 0.0001 BTC we can see
a significant shift. A possible explanation for this shift in distribution we are
experiencing is that for smaller transactions, different routes are calculated. The
next noticeable observation is the high jump around the 4000 betweenness cen-
trality mark for all three transaction sizes. For 0.0001 BTC roughly 100 nodes
are affected and for 0.01 BTC or respectively 0.1 BTC roughly 80 nodes are
concerned. A more in-depth analysis would be required to fully comprehend this
phenomenon, but a possible cause can be that these nodes are all positioned on
a specific shortest path and therefore share the same centrality.
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Another interesting observation is that although the centrality of the majority
of nodes is lower when calculated with the lowest transaction size, the centrality
of the most central node is the highest of all three transaction sizes with 7 500 000.
For comparison the centrality for 0.1 BTC and 0.01 BTC caps at 6 100 000.

Timestamp T4 In T4 we can make out only a few detailed changes 9 months
prior to our latest timestamp T7. Observing Fig. 2 (middle) shows the centrality
distribution for 1026 nodes out of 5231, so 4205 nodes remain leaf nodes with
a centrality of 0. We can detect a similar jump at a centrality of approximately
3000 with 65 nodes having the exact same score. Another jump occurs at the
8000 mark with 48 nodes having the same value.

As was already the case in T7, the higher the centrality gets the more closer
the share of nodes is that has a similar high centrality. However, this is due to
the fact that only a few nodes share such a high betweenness centrality.

Timestamp T1 Fig. 2 (right) depicts the centrality distribution for T1, which
is 21 months prior to T7. At the first glance we can immediately detect that
now all transaction sizes have a much more similar impact on the centrality
distribution of the nodes in the network. However, this is most probably due
to the overall lower amount of nodes in the network at that point in time and
therefore limited amounts of paths that can be selected. According to our data,
there are 1361 nodes in the network in T1 and only 347 out of them have a
higher centrality than 0.

The graphs are rather similar, but jumps still occur. Betweenness values
calculated with the transaction size of 0.0001 BTC experience the highest jumps.
The first one starts at around 1000 and affects 0.3% of the nodes, the second one
starts at around 1600 and affects 0.2% of the nodes. At last, compared to the
most central node in T7, the most central node in T1 only reaches an centrality of
350 000. Even though the lower value is the result of fewer nodes in the network,
one can not deny the rapid centralization of the network within the period of
two years. We next further substantiate our observation of growing centrality.

4.2 Inequality in the Lightning Network

The Gini coefficient is an economic measure for the inequality within a nation
or a social group. Similarly, we use this index in the context of payment channel
networks to shed light on the inequality and skew there exists in the network
topology. In particular, an ”unfair” distribution concentrates much control to a

Fig. 2. Centrality distribution in timestamps T7 (left), T4 (middle) and T1 (right)
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small set of nodes, which is problematic not only for the efficiency of the network
but also raises security concerns. Many attacks in the literature are based on on-
path adversaries [24,28], which hence have significant control. This also generally
goes against the idea of decentralization of finance.

Figure 3 (left and middle) depicts the Lorenz curves for T7 and T1. The
Gini coefficient is equal to the area below the line of perfect equality minus the
area below the Lorenz curve, divided by the area below the line of perfect equal-
ity. Looking at Fig. 3 (left) showing the latest snapshot of the network, we can
see an excellent example of a perfectly unequal distribution, where 90% of the
nodes only correspond to 10% of the cumulative betweenness of all nodes. Con-
sequently, this indicates an extraordinarily high network centralization, where
90% of the shortest paths in the network lead through only a few highly cen-
tralized nodes. Next, looking at Fig. 3 (middle) we can observe that 90% of the
nodes make up for slightly more than 30% of the betweenness, which is still
not an ideal scenario. Subsequently, we can conclude from our observations that
within 21 months the centralization has risen by 20%. Fig. 3 (right) depicts
the Gini coefficients for all seven timestamps. Here we observe an upward trend
in the direction of inequality or centralization. The coefficient is slightly rising
each timestamp, with the biggest jump with absolute 5% being between T1 and
T2. Overall, we can deduce that the Lightning Network is highly centralized.
Having only few, very influential nodes through which most paths are routed, is
not beneficial for the robustness of the network. These nodes pose as significant
targets for attacks and could disrupt the network in the case of failure. However
not only attackers could exploit this situation, but also the nodes or rather the
individuals controlling these nodes.

4.3 Analysis of the Top 10 Nodes

We lastly trace the performance of the most influential nodes, based on their
centrality, in our latest and oldest timestamp, and briefly discuss our findings.

Fig. 4 (left) depicts the top 10 nodes with the highest centrality in the latest
timestamp T7 and their ranks in the earlier timestamps. We can see that most
top nodes were also highly ranked in the past, e.g., N1 has always been in the
Top 20 — with some nodes starting to appear later, but then already at high
rank, such as N3 (ACINQ [39], developer of Eclair).

Fig. 3. Lorenz curves for the timestamps T7 (left) and T1 (middle). Gini Coefficients
ranked according to all seven timestamps (right)
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Fig. 4. Top ten influential node time-
lines, with latest left and oldest right

We now look the other way around to
observe if a node could hold its central po-
sition in the network. Fig. 4 (right) depicts
the top 10 nodes in T1 our oldest snap-
shot and how the nodes performed from
there on. For clarification the nodes de-
picted in this figure are partially not same
as in Fig.4 (left). Many nodes could not
hold their position, the only nodes which
stayed in the Top 10 through all times-
tamps are N3 [40] and N9 or respectively
N7 and N8 in Fig. 4 (left).

Hence, we see that many powerful
nodes of today were already highly influ-
ential in the past, respectively came in
with a strong backing. Yet, a strong po-
sition in the past is not a guarantee, and
many past top 10 nodes lost influence.

5 Future Work

We believe that our work opens several interesting directions for future research.
In particular, it will be interesting to investigate other off-chain networks, fur-
ther implications of centrality in cryptocurrency networks such as censorship
concerns, and to develop mechanisms to foster more decentralization in pay-
ment channel networks. The latter includes the design of alternative, incentive-
compatible routing mechanisms.
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