
Towards Local Shortcutting of Fast Failover Routes
Stephanie Althoff

TU Dortmund
Dortmund, Germany

Frederik Maassen
TU Dortmund

Dortmund, Germany

Marvin Weiler
TU Dortmund

Dortmund, Germany

Apoorv Shukla
TU Dortmund

Dortmund, Germany

Klaus-Tycho Foerster
TU Dortmund

Dortmund, Germany

ABSTRACT
Asmodern networks need to provide high availability and resilience,
they commonly implement some form of Fast Failover Routing (FFR)
in the data plane against link failures. However, FFR needs to find a
balance between route quality and reaction times, where especially
preinstalled failover rules struggle with lengthy detours to provide
connectivity. To this end, we investigate a recently introduced
theoretical paradigm, which removes transient routing detours
by locally short-cutting them in the data plane—without the need
for communication between the routers. Our contribution is two-
fold: First, we provide an nftables implementation and show its
performance gains regarding latency and throughput in Mininet.
Second, we showcase the larger scale route lengths benefits of short-
cutting routing detours, by running a Python-based evaluation on
networks of up to 100 nodes.

CCS CONCEPTS
• Networks→ Network simulations; Network reliability.

KEYWORDS
network resilience, routing, fast failover, Mininet, NetworkX

ACM Reference Format:
Stephanie Althoff, FrederikMaassen,MarvinWeiler, Apoorv Shukla, and Klaus-
Tycho Foerster. 2023. Towards Local Shortcutting of Fast Failover Routes.
In Proceedings of the CoNEXT Student Workshop 2023 (CoNEXT-SW ’23),
December 8, 2023, Paris, France. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3630202.3630223

1 INTRODUCTION AND MOTIVATION
Networks are the backbone of our digital society and hence it is
of paramount importance that these networks provide high avail-
ability and resilience to, e.g., link failures. Therefore, Fast Failover
Routing (FFR) mechanisms are common in modern networks to
rapidly restore connectivity in the data plane itself [1]. They offer
rapidly (p)re-computed alternative routing paths, which are used in
failure scenarios until the slow control plane convergence protocols
kick in—which is often magnitudes slower than the data plane [5].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT-SW ’23, December 8, 2023, Paris, France
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0452-9/23/12.
https://doi.org/10.1145/3630202.3630223

R1

H1 H4

H2

H3

R3

R4

R2

Routing Table for S1 before failure

R2 R3 1

R3 R2 H4 1

Inport Outport Dest. Priority

H1 R2 H4 1

H1 R3 H4 2

H4

Routing Table for S1 after failure

R2 R3 1

R3 R2 H4 1

Inport Outport Dest. Priority

H1 R2 H4 1

H1 R3 H4 2

H4

fast failover
shortcut

before failure

routing loop

additional flow from H2 to H1

Figure 1: Test Network
Topology used for the test with Mininet. The failure between 𝑅2 and 𝑅4 is
added during the test. Once our ShortCut implementation on 𝑅1 detects
𝐻1 −𝐻4 packets using the outport to 𝑅3 due to fast failover routing, the
routing loop to 𝑅2 is short-cut on 𝑅1.

However, a major disadvantage of FFR is the presence of unnec-
essary routing detours, due to the inherent locality of the rapid
reaction process [2]. This presumably leads to restricted concurrent
traffic, causing packet loss in the process and additional delay.

Motivated by the above, the authors of [9] present a concept
called ShortCut, which allows to locally remove FFR loops in the
data plane while still bypassing a failure. ShortCut operates by
augmenting existing FFR mechanisms and uses only router-local
information, such as inport, source and destination to reroute a
packet: if a router detects that a packet uses an outport that is only
triggered by FFR behaviour, it shortcuts the original outport to the
new outport, thereby removing a transient routing detour. However,
ShortCut has so far only been considered theoretically, and was
only designed for a single link failure.

In this paper, the first step toward a practical implementation and
evaluation of shortcutting fast failover routes is made. We imple-
ment the shortcutting paradigm in nftables [7] and use Mininet [8],
a software emulator for creating realistic virtual networks on a
single machine, to test our code. In §2 we present a small Mininet
case study, showcasing latency and throughput benefits. We also
evaluate in §3 with Python how one can handle two or more failures
that occur at the same time and how the route length improves.

2 MININET EVALUATION
We use the small Mininet topology shown in Fig. 1 containing four
routers (𝑅𝑛), each connected via a zero delay switch with unlimited
bandwidth to three host (𝐻𝑛). The links between the routers have
bandwidth limits of 1000 Mbit/s and a constant delay of 2ms. Our

https://orcid.org/0000-0001-7852-6641
https://orcid.org/0000-0002-4324-0755
https://doi.org/10.1145/3630202.3630223
https://doi.org/10.1145/3630202.3630223
https://doi.org/10.1145/3630202.3630223


CoNEXT-SW ’23, December 8, 2023, Paris, France Stephanie Althoff, Frederik Maassen, Marvin Weiler, Apoorv Shukla, and Klaus-Tycho Foerster

5 10 15 20 25 30 35 40

Offset

20

22

24

26

28

30

32

La
te

nc
y 

in
 m

s

Latency

fast failover
external convergence
shortcut

Figure 2: Latency
RTT measured with ping (average
over 5 runs) from 𝐻1 to 𝐻4.

0 5 10 15 20 25 30 35 40

Time in s

300

400

500

600

700

800

900

1000

Ba
nd

w
ith

 in
 M

bi
t/

s

Throughput

fast failover
external convergence
shortcut

Figure 3: Throughput
iPerf3 bandwidth (TCP, average over
5 runs) from 𝐻1 to 𝐻4.

test machine is equipped with an Intel i5-5300U and 12 GB RAM.
A sample implementation [6] is available at git.cs.tu-dortmund.de/
frederik.maassen/ComparisonOfFastRecoveryMethodsInNetworks.

In each test we introduce an artificial link failure between the
routers 𝑅2 and 𝑅4 at the same time. ShortCut is installed on the
router 𝑅1 and configured to detect traffic loops from the link failure
(𝑅2, 𝑅4). For ShortCut we create a Netfilter table to capture relevant
packets and forward them to a Python script which updates the
routing tables, as seen in Fig. 1. We performed two tests with three
different routing behaviors. One with FFR, one FFR enhanced with
ShortCut, and a third with external control plane convergence after
the link failure. To better highlight our results, we did not apply
the recalculated routes to the instances with FRR/ShortCut. We also
evaluated bandwidths of 100 Mbit/s, with analogous results.

Throughput. We simulated one flow from 𝐻1 to 𝐻4 and a sec-
ondary flow from 𝐻2 to 𝐻1 on the Network with iPerf3 [4] as seen
in Figure 1. Both flows saturate the link capacity. Fig. 3 shows the
average throughput rate for the data flow from 𝐻1 to 𝐻4 measured
at 𝐻4. The instances with ShortCut (yellow) showed a short drop
of capacity and quickly restored the flow back to full link capacity.
The instance with only FRR rerouted the packages from flow 1 at
𝑅2 in a loop back to 𝑅1 causing a conflict with the data from the
secondary flow. As a result the throughput halves for each flow.
With external route recalculation the flow was interrupted during
the convergence time, due to the lack of FFR.

Latency. To measure the Latency we use ping with an interval
of 0.1 seconds. Fig. 2 shows the round-trip times from 𝐻1 to 𝐻4.
ShortCut has a small RTT spike when the connection is cut. With
only FRR, after cutting the link, the added 4ms latency is visible. The
external convergence has again package loss for the recalculation
time and then returns to the same value as ShortCut.

3 PYTHON EVALUATION
To show the discrepancy between a simple Fast Failover Routing
and the same FFR in combination with ShortCut we utilize a Python
evaluation with NetworkX. We use SquareOne (SQ1) [3] as FFR,
which creates edge-disjoint paths in descending order between
source and destination and guarantees resilience to𝑘−1 link failures
under 𝑘-connectivity.

Following the original SQ1 evaluation [3], we create random
k-connected graphs and evaluate the FFR performance regarding
hop count. For each number of 30, 40, . . . , 100 nodes, we create 100
random regular graphs with a connectivity of 𝑘 = 8. The network

Figure 4: Hop-Count ratio of
SQ1 w/o ShortCut
Results for 70 nodes.

Figure 5: Hop-Count ratio of
SQ1 w/o ShortCut
Results for 100 nodes.

graphs are introduced to up to 7 = 𝑘 − 1 failures. We explicitly
generate a failure randomly placed along the shortest failure-free
edge-disjoint path. Therefore, when the maximum failure number
of 7 is reached, there is only one path without failure left. It is
further determined that ShortCut only operates at the source node
and not along the path to the destination.

In Fig. 4 and Fig. 5 we give exemplary results for graphs with
70 and 100 nodes, showing the hop count ratio of SQ1 with and
without ShortCut. We can see that the median hop count for SQ1
is increasing with the failure rate and is generally higher than the
one of ShortCut. This can lead up to over ten times more hops using
only SQ1 for a failure number of 7. Furthermore, it is shown that
SQ1 alone never has a smaller hop count. This is explainable by
ShortCut removing loops and traversing the shortest failure-free
path. The results for other graph sizes are analogous and available
at https://github.com/stalth/SQ1_ShortCut

4 CONCLUSION AND FUTUREWORK
This paper presents a first step towards the deployment of local
fast failover route shortcutting in the data plane. We showcase that
our implementation can bring latency and throughput benefits in a
Mininet evaluation, with fast reactions to failure events. Moreover,
we showcased that shortcutting routes can bring significant route
length benefits in larger topologies.

We would like to further develop the shortcutting FFR paradigm,
both conceptually (e.g. for further FFR mechanisms and to deal
with transient failures and fluctuations) and practically (e.g. lever-
aging eBPF ), towards an easy deployability, as well as to check the
processing overhead. To this end, we also plan to run larger-scale
evaluations, evaluate real-world topologies and to investigate the
benefits of partial versus full-scale ShortCut installments.

REFERENCES
[1] Marco Chiesa et al. 2021. A Survey of Fast-Recovery Mechanisms in Packet-

Switched Networks. IEEE Commun. Surv. Tutorials 23, 2 (2021), 1253–1301.
[2] Klaus-Tycho Foerster et al. 2018. Local Fast Failover Routing With Low Stretch.

Comput. Commun. Rev. 48, 1 (2018), 35–41.
[3] Klaus-Tycho Foerster et al. 2019. CASA: Congestion and Stretch Aware Static Fast

Rerouting. In INFOCOM. IEEE, 469–477.
[4] iPerf: The ultimate speed test tool. 2023. iPerf3. https://iperf.fr/.
[5] Junda Liu et al. 2013. Ensuring Connectivity via Data Plane Mechanisms. In NSDI.

USENIX Association, 113–126.
[6] FrederikMaassen. 2022. A Comparison of Fast-RecoveryMechanisms in Networks.
[7] netfilter.org. 2023. nftables. https://netfilter.org/projects/nftables/.
[8] Mininet Project. 2022. Mininet. http://mininet.org/.
[9] Apoorv Shukla and Klaus-Tycho Foerster. 2021. Shortcutting Fast Failover Routes

in the Data Plane. In ANCS. ACM, 15–22.

git.cs.tu-dortmund.de/frederik.maassen/ComparisonOfFastRecoveryMethodsInNetworks
git.cs.tu-dortmund.de/frederik.maassen/ComparisonOfFastRecoveryMethodsInNetworks
https://github.com/stalth/SQ1_ShortCut
https://iperf.fr/
https://netfilter.org/projects/nftables/
http://mininet.org/

	Abstract
	1 Introduction and Motivation
	2 Mininet Evaluation
	3 Python Evaluation
	4 Conclusion and Future Work
	References

