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• How about a coloring of a subgraph?

• Local model: runtime does not change

• With preprocessing: fast!

◦ Coloring remains valid

• What are further application scenarios?

• What else can we do with the SUPPORT of Preprocessing?
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• Decentralization aids scalability

◦ But: Many problems are not “local” (e.g., coloring)

- Spanning tree, shortest path, minimizing congestion, good optimization algorithms

• Preprocessing helps scalability (e.g., breaking symmetries ahead of time)

◦ Unknown network state too strong assumption for many scenarios

◦ Often we just react to events, physical topology in wired networks does not grow suddenly

• Case study: Software-Defined Networking, single (logically centralized) controller does not scale

◦ Create many local controllers that can react quickly, that control small set of “dumb” nodes

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 5
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The SUPPORTED Model

G

H

Active variant: allow to 
communicate on support H

E.g. MAC-address
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Does the SUPPORTED Model make everything easy?
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• Task: Leader election (Θ(diameter) runtime in LOCAL model)

◦ Easy if G=H: precompute leader, 0 rounds

◦ But for different G:

- We need to compute a leader for each connected component of G!

• Component has no leader? Re-elect 

• Component has multiple leaders? Re-elect 

• Components can have asymptotically same diameter 

• SUPPORTED model does not provide a “silver bullet”

◦ Not even for the active variant
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Maybe even useless in general?

Idea: simulate that support graph H is a 
complete graph

In active model:
Congested Clique



• Real topologies are usually not complete graphs

• Case study: planar graphs

◦ Remain planar under edge deletions

◦ Are 4-colorable
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But: Restricted Graph Families are Useful ☺

„Geloeste und ungeloeste Mathematische Probleme aus alter und neuer Zeit" by Heinrich Tietze
http://www.math.harvard.edu/~knill/graphgeometry/faqg.html
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1) precompute 4-coloring 
2) reduce 4-colored pseudo-forest to 3 colors in 2 rounds
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• (1+δ)-approximation not possible in constant time [Czygrinow et al., DISC 2008]

◦ But maybe in the SUPPORTED model?

• Let‘s analyze their LOCAL algorithm:

◦ Find weight-appropriate pseudo-forest [constant time ☺]

◦ 3-color pseudo-forest [non-constant time ] 

◦ Run clustering/optimization algorithms on components of constant size [constant time ☺]

• Also works for O(1)-genus graphs [extending work of Akhoondian Amiri et al.]

◦ Also for planar graphs for maximum independent set & maximum matching
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Case Study: Minimum Dominating Set in Planar Graphs

Max out-degree of 1

[constant time SUPPORTED model ☺]



12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model



12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Use all edges of H 
for communication



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Use all edges of H 
for communication



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

◦ SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Use all edges of H 
for communication



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

◦ SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

◦ SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))Use all edges of H 

for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))Use all edges of H 

for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

Also works without 
the active model

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

• Optimization problem: Maximum Independent Set, of size α(G)

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

Also works without 
the active model

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

• Optimization problem: Maximum Independent Set, of size α(G)

◦ Set of size (α(G)-ε)n in O(log1+ε n), respectively (1+ε) approximation if maximum degree Δ constant

12/10/2018 Preprocessing for Local Algorithms. Talk @ETH Zurich, Distributed Computing Group. Host: Roger Wattenhofer Page 11

Further Results in the Active SUPPORTED Model

Also works in passive model:
SLOCAL(t) →SUPPORTED(ΔO(t))

Also works without 
the active model

e.g. network size, restricted H, known inputs..

Use all edges of H 
for communication

Best LOCAL algorithm:

2𝑂( log 𝑛)



• Connection to SLOCAL model [Ghaffari et al., STOC 2017]

- SLOCAL(t) can be simulated in SUPORTED(O(t∗poly log n)): e.g. MIS in SUPPORTED(poly log n)

- Converse not true, respectively open question

• Locally Checkable Labelings LCL:

◦ LCL in LOCAL(o(log n)) can be solved in O(1) in the SUPPORTED model

• Optimization problem: Maximum Independent Set, of size α(G)

◦ Set of size (α(G)-ε)n in O(log1+ε n), respectively (1+ε) approximation if maximum degree Δ constant

◦ Cannot be approximated by o(Δ/log Δ) in time o(logΔ n) in the active SUPPORTED model
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