

Klaus-T. Foerster, University of Vienna

25 Jul 2018 @ Cornell University. Host: Nate Foster

Walking Through Middleboxes Ithaca

Practical Motivation: Middleboxes

- Classical case: Routing inflexible
 - Place at the edge / along the route

Practical Motivation: Middleboxes

- Classical case: Routing inflexible
 - Place at the edge / along the route

Software-Defined Networking paradigm:
Arbitrary routes

- Also via: Source routing
- To some extent: Segment routing

This talk: *Algorithms to find routes*

Related: Verification / What-if analysis of waypoint properties in MPLS routing

- Unlike general SDN, MPLS can be modeled via push-down automata
- S. Schmid and J. Srba: "Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks", INFOCOM 2018.

This talk: *Algorithms to find routes*

Related: Verification / What-if analysis of waypoint properties in MPLS routing

- Unlike general SDN, MPLS can be modeled via push-down automata
- S. Schmid and J. Srba: "Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks", INFOCOM 2018.

Also already some work on joint problem with waypoint placement

Walking Through Middleboxes Waypoints

• Given: Undirected graph with waypoints

Later also: directed

- Given: Undirected graph with waypoints
- Find: Shortest s-t walk through all waypoints

• Given: Undirected graph with waypoints

• Given: Undirected graph with waypoints

• Given: Undirected graph with waypoints

- Find: Shortest s-t walk through all waypoints
- Twist: Respect capacities

- Find: Shortest s-t walk through all waypoints
- Twist: Respect capacities

- Find: Shortest s-t walk through all waypoints
- Twist: Respect capacities

- Find: Shortest s-t walk through all waypoints
- Twist: Respect capacities

Model Variants

• Ordered Waypoint Routing:

- S. Akhoondian Amiri, K.-T. Foerster, R. Jacob, and S. Schmid, "*Charting the Algorithmic Complexity of Waypoint Routing*", ACM SIGCOMM Computer Communication Review, vol. 48, no. 1, 2018.
- S. Akhoondian Amiri, K.-T. Foerster, M. Parham, R. Jacob, and S. Schmid, "Waypoint Routing in Special Networks", IFIP Networking 2018

• Unordered Waypoint Routing

- S. Akhoondian Amiri, K.-T. Foerster, and S. Schmid, "Walking through Waypoints", LATIN 2018

Model Variants

• Ordered Waypoint Routing:

- S. Akhoondian Amiri, K.-T. Foerster, R. Jacob, and S. Schmid, "*Charting the Algorithmic Complexity of Waypoint Routing*", ACM SIGCOMM Computer Communication Review, vol. 48, no. 1, 2018.
- S. Akhoondian Amiri, K.-T. Foerster, M. Parham, R. Jacob, and S. Schmid, "Waypoint Routing in Special Networks", IFIP Networking 2018

• Unordered Waypoint Routing

- S. Akhoondian Amiri, K.-T. Foerster, and S. Schmid, "Walking through Waypoints", LATIN 2018
- We start with joint case: One waypoint

Model Variants

• Ordered Waypoint Routing:

- S. Akhoondian Amiri, K.-T. Foerster, R. Jacob, and S. Schmid, "*Charting the Algorithmic Complexity of Waypoint Routing*", ACM SIGCOMM Computer Communication Review, vol. 48, no. 1, 2018.
- S. Akhoondian Amiri, K.-T. Foerster, M. Parham, R. Jacob, and S. Schmid, "Waypoint Routing in Special Networks", IFIP Networking 2018

• Unordered Waypoint Routing

- S. Akhoondian Amiri, K.-T. Foerster, and S. Schmid, "Walking through Waypoints", LATIN 2018
- We start with **joint** case: **One** waypoint
 - Followed by ordered and unordered

• Already non-trivial

- Already non-trivial
- For simplicity: unit demand, unit capacity

- Already non-trivial
- For simplicity: unit demand, unit capacity

• Greedy fails: choose shortest path from s to w...

- Already non-trivial
- For simplicity: unit demand, unit capacity

• Greedy fails: ... now needs long path from w to t

- Already non-trivial
- For simplicity: unit demand, unit capacity

• Greedy fails: total length: 2+6=8

- Already non-trivial
- For simplicity: unit demand, unit capacity

- Greedy fails: total length: 2+6=8
- Optimal: Jointly optimize: 4+2=6

- Already non-trivial
- For simplicity: unit demand, unit capacity

- Greedy fails: total length: 2+6=8.
- Optimal: Jointly optimize: 4+2=6. How hard can it be?

Runtime: $O((|V|\log|E|)(|E| + |V|\log|V|))$

Runtime: O((|V|log|E|)(|E| + |V|log|V|)) Faster runtime?

Use Directed Algorithms

Use Directed Algorithms

Algorithm by Suurballe and Tarjan '84: Two directed edge-disjoint s-t-paths in O(|E|log_(1+|E|/|V|)|V|)

Use Directed Algorithms

Algorithm by Suurballe and Tarjan '84: Two directed edge-disjoint s-t-paths in O(|E|log_(1+|E|/|V|)|V|)

• 2 edge-disjoint paths in directed graphs: NP-hard

2 edge-disjoint paths in directed graphs: NP-hard

Suurballe & Tarjan required shared source and shared destination

- 2 edge-disjoint paths in directed graphs: NP-hard
 - But for 1 waypoint?

- 2 edge-disjoint paths in directed graphs: NP-hard
 - But for 1 waypoint?

- 2 edge-disjoint paths in directed graphs: NP-hard
- But for 1 waypoint? NP-hard as well ☺

Brief Summary: One Waypoint

• Undirected case: Nearly linear runtime 🙂

• Directed case: NP-hard ⊗

Brief Summary: One Waypoint

- Undirected case: Nearly linear runtime $\textcircled{\sc {\odot}}$
 - What if middlebox alters flow size?
- Directed case: NP-hard ⊗

- The following problem is NP-hard:
 - Is the max integral s-t flow 2 or 3, when the flow is 2-splittable?

- The following problem is NP-hard:
 - Is the max integral s-t flow 2 or 3, when the flow is 2-splittable?

- The following problem is NP-hard:
 - Is the max integral s-t flow 2 or 3, when the flow is 2-splittable?
 - Adapt to waypoint routing

- The following problem is NP-hard:
 - Is the max integral s-t flow 2 or 3, when the flow is 2-splittable?
 - Adapt to waypoint routing

- The following problem is NP-hard:
 - Is the max integral s-t flow 2 or 3, when the flow is 2-splittable?
 - Adapt to waypoint routing: Again NP-hard $\ensuremath{\mathfrak{S}}$

Brief Summary II: One Waypoint

- Undirected case: Nearly linear runtime ③
 - What if middlebox alters flow size? NP-hard ☺
- Directed case: NP-hard ⊗

Brief Summary II: One Waypoint

- Undirected case: Nearly linear runtime ③
 - What if middlebox alters flow size? NP-hard ⊗
- Directed case: NP-hard Θ
- How about more than one waypoint in the undirected case?

Related **open** problem: Deterministic algorithm for **shortest 2 edge-disjoint paths**

Related **open** problem: Deterministic algorithm for **shortest 2 edge-disjoint paths**

Feasible Solutions: O(1) Waypoints

- O(1) edge-disjoint paths:
 - Has polynomial algorithm!
 - [N. Robertson and P. D. Seymour, "Graph Minors .XIII. The Disjoint Paths Problem," J. Comb. Theory, Ser. B, vol. 63, no. 1, pp. 65–110, 1995.]

Feasible Solutions: O(1) Waypoints

- O(1) edge-disjoint paths:
 - Has polynomial algorithm!
 - [N. Robertson and P. D. Seymour, "Graph Minors .XIII. The Disjoint Paths Problem," J. Comb. Theory, Ser. B, vol. 63, no. 1, pp. 65–110, 1995.]
- Apply to waypoint routing:
 - First path: From source to first waypoint
 - Second path: From first waypoint to second waypoint

۰ ...

• Last path: From last waypoint to destination

O(n) waypoints

• O(n) edge-disjoint paths? NP-hard

O(n) waypoints

• O(n) edge-disjoint paths? NP-hard

• O(n) waypoints? NP-hard too

Essentially same idea as before

Summary: Ordered

	# Waypoints	Feasible	Optimal	Demand Change Feasible	Optimal
Undirected	1	Р		Strongly NPC	
	constant	Р	?		
	arbitrary	Strongly NPC			
Directed	1				
	constant	Strongly NPC			
	arbitrary				
TABLE I					

OVERVIEW OF THE COMPLEXITY LANDSCAPE FOR WAYPOINT ROUTING IN GENERAL GRAPHS.

We further investigated this open box, parametrized by "treewidth" *tw*

Summary: Ordered

	# Waypoints	Feasible	Optimal	Demand Change Feasible	Optimal
Undirected	1	Р		Strongly NBC	
	constant	Р	?	- Strongly NPC	
	arbitrary		ly NPC		
Directed	1				
	constant	Strongly NPC			
	arbitrary				
			TI DI DI I		

TABLE I OVERVIEW OF THE COMPLEXITY LANDSCAPE FOR WAYPOINT ROUTING IN GENERAL GRAPHS.

We further investigated this open box, parametrized by "treewidth" *tw*

Summary: Ordered

	# Waypoints	Feasible	Optimal	Demand Change Feasible	Optimal
Undirected	1	Р		Strongly NPC	
	constant	Р	? •	Strongly NIC	
	arbitrary		Strong	ly NPC	
Directed	1				
	constant	Strongly NPC			
	arbitrary				
			TINT T		

 TABLE I

 OVERVIEW OF THE COMPLEXITY LANDSCAPE FOR WAYPOINT ROUTING IN GENERAL GRAPHS.

# Waypoints	Feasible Algorithms	Known Hardness	Demand Change Optimal Algorithms	Demand Change Hardness
Arbitrary	P : Outerplanar ($tw \leq 2$)	Strongly NPC: tw ≤ 3	P : Tree (equivalent to tw of 1)	NPC : Unicyclic (tw ≤ 2)
Constant	P: General graphs	P: General graphs	P : Constant treewidth $tw \in O(1)$	Strongly NPC: General graphs

 TABLE II

 Overview of the Complexity Landscape for Waypoint Routing in Special Undirected Graphs.

Walking Through <u>Unordered</u> Waypoints

• Can we just use algorithms from the ordered case?

Walking Through Unordered Waypoints

- Can we just use algorithms from the ordered case?
 - Problem: Combinatorial explosion of possibilities

Walking Through Unordered Waypoints

- Can we just use algorithms from the ordered case?
 - Problem: Combinatorial explosion of possibilities
 - Already logarithmically many waypoints: not tractable

Walking Through Unordered Waypoints

- Can we just use algorithms from the ordered case?
 - Problem: Combinatorial explosion of possibilities
 - Already logarithmically many waypoints: not tractable

• Let us take a step back

Theoretical Motivation I/II: Subset TSP

- Subset TSP:
 - \circ Shortest tour through k waypoints
 - Difference: No capacities
 - E.g., [P. N. Klein & D. Marx , "A subexponential parameterized algorithm for Subset TSP on planar graphs", SODA 2014]

Sometimes *k*-Cycle is a different problem

Theoretical Motivation II/II: *k***-Cycle Problem**

- Find vertex/edge-disjoint cycle through k waypoints
 - $k \in O(1)$: polynomial algorithm via disjoint path problem
 - [N. Robertson and P. D. Seymour, "*Graph Minors .XIII. The Disjoint Paths Problem,*" J. Comb. Theory, Ser. B, vol. 63, no. 1, pp. 65–110, 1995.]
 - $k \in O\left((\log \log n)^{1/10}\right)$: polynomial algorithm
 - [K. Kawarabayashi, "An improved algorithm for finding cycles through elements," IPCO 2008.]
 - Randomized algorithm with runtime of $2^k n^{O(1)}$ (shortest tour)
 - [A. Björklund, T. Husfeld, and N. Taslaman, "Shortest cycle through specified elements," SODA 2012.]

Walking Through Waypoints on Bounded Treewidth Graphs

- Initial ideas:
 - \circ Capacities $c: E \rightarrow \{1, 2\}$ suffice
 - Never traverse an edge more than twice
 - From, e.g.,: [Klein & Marx, SODA 2014]
 - \circ Reduce s t tours to cycles
 - Connect *s*, *t* to fake vertex
 - Trick does not work for uncapacitated (subset) TSP!
 - Remove weights and capacities by expanding graph ("Unify")
 - Only works for integral weights polynomial in input size

Treewidth

- How much is a graph "like" a tree?
 - [Robertson and Seymour, 1984]
- Intuition:
 - \circ A tree is like a tree $\textcircled{\sc o}$
 - A complete graph? Not at all.
 - In between?

(Example: Based on slides of Dániel Marx)

• Bijection between tree T and collection X, where every element of X is a set of vertices of G such that:

- Bijection between tree T and collection X, where every element of X is a set of vertices of G such that:
 - 1. Each graph vertex is contained in at least one tree node (the bag or separator)

- Bijection between tree *T* and collection *X*, where every element of *X* is a set of vertices of *G* such that:
 - 1. Each graph vertex is contained in at least one tree node (the bag or separator)

- Bijection between tree *T* and collection *X*, where every element of *X* is a set of vertices of *G* such that:
 - 1. Each graph vertex is contained in at least one tree node (the bag or separator)
 - 2. Tree nodes containing a vertex v form a connected subtree of T

- Bijection between tree *T* and collection *X*, where every element of *X* is a set of vertices of *G* such that:
 - 1. Each graph vertex is contained in at least one tree node (the bag or separator)
 - 2. Tree nodes containing a vertex v form a connected subtree of T
 - 3. When vertices are adjacent in the graph, then the corresponding subtrees have a node in common

- Bijection between tree *T* and collection *X*, where every element of *X* is a set of vertices of *G* such that:
 - 1. Each graph vertex is contained in at least one tree node (the bag or separator)
 - 2. Tree nodes containing a vertex v form a connected subtree of T
 - 3. When vertices are adjacent in the graph, then the corresponding subtrees have a node in common
- Width of a tree decomposition: largest bag size -1
- Treewidth: Minimum width of all tree decompositions

How does a Tree Decomposition help us?

- Recall: nodes represent separators
- Do dynamic programming
 - Don't care what is "behind" the separator

How does a Tree Decomposition help us?

- Recall: nodes represent separators
- Do dynamic programming
 - Don't care what is "behind" the separator
 - Represent subsolutions with a signature

How does a Tree Decomposition help us?

- Recall: nodes represent separators
- Do dynamic programming
 - Don't care what is "behind" the separator
 - Represent subsolutions with a signature

- Edges between vertices in the bag in the sub-walks (here: from d to c)
- For each signature, only store min cost subsolution
- Subsolutions must contain all waypoints in subgraph
- # signatures for treewidth $tw: 2^{O(tw^2)}$ per bag at most

d,f,g

c,d,f

b,e,f

b,c,f

a,b,c

g,h

- See for example:
 - [T. Kloks, "Treewidth, Computations and Approximations", LNCS 842, 1994.]

• Rooted tree decomposition with 4 node types:

- Rooted tree decomposition with 4 node types:
 - Leaf (bag size of 1)

- Rooted tree decomposition with 4 node types:
 - Leaf (bag size of 1)
 - **Forget** (1 vertex leaves bag in parent node (only child))

- Rooted tree decomposition with 4 node types:
 - Leaf (bag size of 1)
 - **Forget** (1 vertex leaves bag in parent node (only child))
 - Introduce (1 vertex enters bag in parent node (only child))

- Rooted tree decomposition with 4 node types:
 - Leaf (bag size of 1)
 - Forget (1 vertex leaves bag in parent node (only child))
 - Introduce (1 vertex enters bag in parent node (only child))
 - Join (Both children have same vertices)

- Min *tw* decomposition? NP-hard 🛞
- But: Constant factor approximation in $O(c^{tw} n \log tw)$ [Bodlaender et al., FOCS 2013] \odot
- Every tree decomposition can be made nice in $O(n * tw^2)$ time with O(n * tw) nodes \bigcirc

Leaf Nodes

- A leaf node only contains a single vertex v
 - \circ Just enumerate all options $\textcircled{\odot}$
 - (v,v)
 - Empty signature (only valid if v is not a waypoint!)

• Runtime: O(1)

Forget Nodes

- Intuition:
 - For walks from the rest of the graph to reach u, they have to pass through the separator v,w
- In other words:
 - \circ Take the signatures from the child node that
 - Don't contain u as an endpoint
 - Remove all edges incident to u

Introduce nodes

• Intuition:

• In the new subsolutions, u only has neighbors from v,w

- Rough idea:
 - Take all signatures from the child node
 - Combine with new edges (can extend sub-walks or merge them...)
 - If **u** is a waypoint don't forget to cover it
- Runtime: $tw^{O(tw^2)}$

Join nodes

- So far: All node runtimes in f(tw) independent of V, E
- Classic approach: "Glue" subsolutions together, easy! ③
 - ° E.g., for Hamiltonian Cycle problem
 - \circ Does not work here igodot
 - (Problem: Too many crossings when "cutting" apart)

Join nodes

- Rather, coming backwards:
 - $^{\circ}$ A valid subsolution of the join node can be separated
- As thus, going forward:
 - \circ Take the edges of both child subsolutions
 - Merge them
 - Create all possible signatures/subsolutions for join node
- Runtime: $|V|^{O(tw)} 2^{O(tw^2)}$

Total Runtime so far

- Nice tree decomposition:
 - \circ *O*(*c*^{*tw*}n log *tw*) + *O*(*n* ∗ *tw*²) for some *c* ∈ N
- Individual runtimes per node, O(n * tw) at most:
 - Join: O(1)
 - Forget: $2^{O(tw^2)}$
 - Intoduce: $tw^{O(tw^2)}$
 - Join: $|V|^{O(tw)} 2^{O(tw^2)}$

• Total: In Class **XP**, i.e., $|V|^{f(tw)}$

Are we done?

- We actually forgot something:
 - Signatures limit #sub-walks to bag size
 - Will this yield an optimal solution?
- Observe: Optimal solution walk induces Eulerian Graph
- We can show, for any (A,B)-vertex-separator:
 - Walk can be separated appropriately
 - (Not shown here as I already talked long enough)

Walking through logarithmically many waypoints on general graphs

- Again: "Unify" graphs
 All weights and capacities are 1
 Idea:

 Create adapted line graph
 Apply disjoint k-Cycle algorithms from Kawarabayash & Björklund et al.
- Deterministic and feasible: Polynomial runtime for $|W| \in O\left((\log \log n)^{1/10}\right)$
- Randomized and shortest tour: Runtime of $2^{|W|}n^{O(1)}$ (i.e., $|W| \in O(\log n)$)

NP-hardness

- Idea:
 - $^{\circ}$ Max degree 3? Enter and leave every node only once \odot
 - Look for problems where Hamiltonian Cycle is NP-hard
 - "Blow up" number of nodes polynomially
- NP-hard for any fixed constant r on
 - Grid graphs of maximum degree 3
 - 3-regular bipartite planar graphs

Summary: Unordered

b,e,f

d,f,g

g,h

Bounded treewidth: in XP $(n^{O(tw^2)})$ (i.e., polynomial for constant tw)

Analogy: Capacitated Subset TSP

w

b,c,f

a,b,c

General graphs & $|W| \in O(\log n)$: polynomial runtime

Grid graphs & $|W| \in O(n^{1/r})$: NP-hard

Summary: Ordered

	# Waypoints	Feasible	Optimal	Demand Change Feasible	Optimal	
Undirected	1	Р		Strongly NPC		
	constant	Р	?	Subligity NIC		
	arbitrary		Strong	y NPC		
Directed	1					
	constant	Strongly NPC				
	arbitrary					
TABLE I						

OVERVIEW OF THE COMPLEXITY LANDSCAPE FOR WAYPOINT ROUTING IN GENERAL GRAPHS.

Summary: Ordered

	# Waypoints	Feasible	Optimal	Demand Change Feasible	Optimal
Undirected	1	Р		Strongly NPC	
	constant	Р	?	Strongly M C	
	arbitrary		Strong	gly NPC	
Directed	1				
	constant	Strongly NPC			
	arbitrary				
	· · · · · · · · · · · · · · · · · · ·		TADIEI		

TABLE I OVERVIEW OF THE COMPLEXITY LANDSCAPE FOR WAYPOINT ROUTING IN GENERAL GRAPHS.

# Waypoints	Feasible Algorithms	Known Hardness	Demand Change Optimal Algorithms	Demand Change Hardness
Arbitrary	P : Outerplanar ($tw \leq 2$)	Strongly NPC: tw ≤ 3	P : Tree (equivalent to tw of 1)	NPC : Unicyclic (tw ≤ 2)
Constant	P: General graphs	P: General graphs	P : Constant treewidth $tw \in O(1)$	Strongly NPC: General graphs

 TABLE II

 Overview of the Complexity Landscape for Waypoint Routing in Special Undirected Graphs.

Walking Through Middleboxes

Klaus-T. Foerster, University of Vienna

25 Jul 2018 @ Cornell University. Host: Nate Foster

Thank you 🙂