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Abstract. We study the problem of multi-agent online graph explo-
ration, in which a team of k agents has to explore a given graph, starting
and ending on the same node. The graph is initially unknown. When-
ever a node is visited by an agent, its neighborhood and adjacent edges
are revealed. The agents share a global view of the explored parts of the
graph. The cost of the exploration has to be minimized, where cost either
describes the time needed for the entire exploration (time model), or the
length of the longest path traversed by any agent (energy model). We in-
vestigate graph exploration on cycles and tadpole graphs for 2-4 agents,
providing optimal results on the competitive ratio in the energy model
(1-competitive with two agents on cycles and three agents on tadpole
graphs), and for tadpole graphs in the time model (1.5-competitive with
four agents). We also show competitive upper bounds of 2 for the explo-
ration of tadpole graphs with three agents, and 2.5 for the exploration
of tadpole graphs with two agents in the time model.
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1 Introduction

In the Online Graph Exploration problem, all nodes of a given weighted graph
G = (V,E, l) have to be visited by an agent a, starting and ending on a starting
node s ∈ V . The graph is initially unknown, except for s and its neighborhood
N(s). Whenever the agent reaches a yet unvisited node v, all adjacent edges and
N(v) are revealed. Nodes can be distinguished, but the labels do not provide any
information about the graph to the agent. We consider graph exploration with
k ∈ N agents a1, ..., ak, for which we assume unlimited computational power and
shared knowledge, meaning that as soon as any agent learns something about
the neighborhood of a node, all other agents instantly receive the same informa-
tion. A graph is considered explored, when each node in V has been visited by
any agent, and all agents have returned to s. All agents move at identical speed,
taking time l(e) for traversing some edge e. An agent can decide to wait at a
node, while other agents are traversing edges. The goal of a graph exploration
strategy is to minimize the cost of the exploration.
This problem is widely used to describe the exploration of unknown terrain by
multiple autonomous robots. Some variations focus on the general exploration
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Time Model Energy Model
Graph Class (# of Agents) Lower Bound Upper Bound Lower Bound Upper Bound
Cycles (2 Agents) 1.5 [10] 1.5 [10] 1 1 (Thm. 2)
Tadpole Graphs (2 Agents) 1.5 (Thm. 3) 2.5 (Thm. 5) 1.5 (Thm. 4) 2.5 (Thm. 5)
Tadpole Graphs (3 Agents) 1.5 (Thm. 3) 2 (Thm. 6) 1 1 (Thm. 6)
Tadpole Graphs (4+ Agents) 1.5 (Thm. 3) 1.5 (Thm. 7) 1 1 (Thm. 6)

Table 1: The new bounds for the exploration of cycles and tadpole graphs.

time [10,3,8] (here called the Time Model), while others focus on the maximum
distance traversed by any individual agent, modeling the maximum energy con-
sumption of a single robot [5,6] (here called the Energy Model). We consider
both models for the cost of an exploration.
In the single-agent case, many graph classes like directed graphs, tadpole graphs
or cactus graphs have been investigated [7,2,9], while the main focus of the lit-
erature in the case of multi-agent exploration lies on general graphs and trees
[5,4,3,8], with the exception of cycles (in the time model) and n× n-grid graphs
[10,11]. We consider cycles (in the energy model) and tadpole graphs, which
consist of a cycle and a path attached to one of its nodes, called the tail. An
overview of our results is given in Table 1.
Online algorithms are analyzed in terms of their competitive ratios, which de-
scribe the relationship between the costs of online and optimal solutions. Note
that a c-competitive exploration strategy for the time model is also at most c-
competitive for the energy model, since in an exploration that takes time T , no
agent can traverse a distance greater than T . In the optimal case the maximum
distance traversed by any agent matches the general exploration time.
In the following Sections we provide an overview of our results on Cycles in §2
and Tadpole Graphs in §3. A detailed version of this BA is provided on arXiv[1].

2 Cycles

Preliminaries We call the point on a cycle with exactly distance Lc/2 in both
directions to the starting point s, the midpoint m of the cycle. If m falls onto an
edge, this edge is called emid. If m falls onto a node, the node is called vmid. In
this case we consider l(emid) = 0. We consider emid = (vl, vs). If emid = (vl, vs)
does not exist, we consider vl = vs = vmid. We denote pl and ps with length dl
and ds as edge-disjoint paths from s to vl and vs respectively, where pl and ps
combined contain all edges of the cycle except (vl, vs). We always assume w.l.o.g
that ds ≤ dl. An example is given in Figure 1a.

Higashikawa et al. presented the ALE (avoid longest edge) Algorithm, which is a
greedy 1.5-competitive online algorithm for the exploration of cycles in the time
model [10], that sends two agents in different directions and always chooses the
shorter edge. We first show that ALE is 1.5-competitive in the energy model
and then present a modification we call the AMP (avoid midpoint) Algorithm,
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Fig. 1: Examples of a cycle (a) and a tadpole graph (b).

reaching a competitive ratio of 1 in the energy model, while still being 1.5-
competitive in the time model. For proving this we make use of an observation
made by Higashikawa et al. [10]: an optimal strategy for exploring cycles with 2
Agents takes time 2dℓ.

Theorem 1 (The ALE algorithm and the energy model). The ALE al-
gorithm has a competitive ratio of 1.5 in the energy model on cycles.

Proof. Consider the graph shown in Figure 2a. Let 0.5 > ε > 0. Since (s, x2) is
the longest edge in the graph, one agent explores the graph clockwise from s to
x2. After the agent reaches x2 the shortest path to s is the edge (x2, s), leading
to a cost of 3. An optimal strategy would have sent both agents from s to x1

and x2 respectively, leading to an exploration cost of 2(1 + ε). The overhead
of ALE in this case is 3

2(1+ε) , leading to a lower bound of 1.5. Since ALE is
1.5-competitive in the time model, the upper bound of 1.5 for the energy model
follows.

Theorem 2 (AMP on Cycles). For the energy model, the AMP (Avoid Mid-
point) Algorithm 1 explores a cycle with a competitive ratio of 1. For the time
model the algorithm explores a cycle with a competitive ratio of 1.5.

Proof. We can prove the 1-competitiveness of the AMP algorithm for the energy
model, by showing that the agents only traverse the cycle to vs and vℓ (or vmid)
before returning, and never traverse the edge emid. We then use this result to
prove the 1.5-competitive ratio for the time model.

Energy Model If both agents reach vmid at the same time, all nodes have been
visited and both agents have traversed a distance of L/2 before and L after
backtracking, which matches the result of the optimal offline strategy.
If an agent a1 reaches vmid first, having traversed a distance d1 = L/2, the
other agent a2 must have traversed a distance d2 < d1. Thus, a2 moves to vmid

without stopping. Then both agents have traversed a distance of L/2 when all
nodes have been visited and L after backtracking.
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Algorithm 1 AMP (Avoid Midpoint)
Require: A unknown cycle graph G = (V,E), Two agents a1, a2, a starting node

s ∈ V
d(a1)← 0; d(a2)← 0 ▷ Agents track their already traversed distance
Exp← {s} ▷ Keep track of already explored vertices
Let n(a1) and n(a2) describe the next nodes seen by the agents
Assign the two neighbors of s randomly to n(a1) and n(a2)
while n(a1) ̸∈ Exp ∨ n(a2) ̸∈ Exp do ▷ While graph is not explored

if d(a1) + l(n(a1)) < d(a2) + l(n(a2)) then
a1 traverses edge to n(a1)
Exp← Exp ∪ {n(a1)}
d(a1)← d(a1) + l(n(a1))
n(a1)← next revealed node

else
a2 traverses edge to n(a2)
Exp← Exp ∪ {n(a2)}
d(a2)← d(a2) + l(n(a2))
n(a2)← next revealed node

end if
end while
a1 and a2 return to s using shortest paths.

Assume w.l.o.g an agent a1 is currently located on vs after having traversed
distance ds and has not yet traversed emid, while the other agent a2 has not
reached vℓ yet. Since dℓ < L/2 < ds+l(emid) the agent a2 traverses to vℓ without
stopping. At this point all nodes have been visited and the agents backtrack,
having taken the same paths as they would have in an optimal offline exploration.

Time Model Recall that an optimal strategy takes time 2dℓ. In the AMP al-
gorithm, the agents traverse the distances ds and dℓ. Since only one agent is
traversing an edge at a time until all nodes have been visited, the maximum
time needed to visit all nodes is ds + dℓ ≤ 2dℓ. After backtracking to s the full
exploration time is at most 3dℓ, leading to a competitive ratio of 1.5.

3 Tadpole Graphs

Preliminaries A tadpole graph contains exactly one node with degree 1, which
we call the end of the tail vt and exactly one node with degree 3, we call the
intersection vi. All other nodes of the graph have degree 2. We define vs, vℓ, vmid

similar to cycles, but starting at vi instead of s, when s is located on the tail of
the tadpole graph. An Example is given in Figure 1b. Note that any optimal ex-
ploration strategy on tadpole graphs takes at least time 2max(d(s, vℓ), d(s, vt)).

We first prove that the lower bound of 1.5 holds on tadpole graphs for at least two
agents in the time model, and for two agents in the energy model in Thm.3 and
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Fig. 2: Lower Bound constructions for: ALE and Tadpole Graphs (energy model).

Thm.4. For the following Thm.5-7, we roughly sketch the exploration strategies
on tadpole graphs, and how they achieve the stated upper bounds for the given
number of agents. A detailed descripton and analysis is provided on arXiv[1].

Theorem 3 (Time Model: Lower bound for exploring tadpole graphs).
For any number of agents k ≥ 2, any online exploration strategy for tadpole
graphs has a competitive ratio of at least 1.5 in the time model.

Proof. We can adapt the cycle from the proof of Thm.2.2 by Higashikawa et
al.[10], by adding a tail of length ε to the starting node. This does not influence
the offline exploration time, since the path can always be explored by some agent
in parallel and thus keeps the lower bound of 1.5 on tadpole graphs with any
number of agents ≥ 2.

Theorem 4 (Energy Model: Lower bound for exploring tadpole graphs).
For k = 2 agents, no online exploration strategy on tadpole graphs can have a
competitive ratio better than 1.5 in the energy model.

Proof. We can adapt the proof idea from Lemma 7 by Dynia et al.[5], using a tree
with three branches and connecting two branches with an arbitrarily long edge.
The resulting tadpole graph is shown in Figure 2b. Let ε > 0 be an arbitrary
small and ∞ be an arbitrary large number. The maximum distance traversed by
any agent online here is at least 6− 2ε, while an optimal exploration has length
4. This leads to a lower bound of 1.5

Theorem 5 (Two-agent randomized tadpole graph exploration). Using
the AMP strategy with k = 2 agents for the exploration of tadpole graphs, choos-
ing random paths as soon as the intersection is found leads to a competitive upper
bound of 2.5.

Using two agents, we randomly choose a direction as soon as the intersection is
found and apply the AMP strategy on the chosen paths. As soon as the tail or
the cycle are explored, one agent returns to s and explores the remaining path of
the graph. This leads to an exploration time of at most 5max(d(s, vℓ), d(s, vt))
and a competitive ratio of 2.5 in the time model, which also applies to the energy
model.
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Theorem 6 (Three agent tadpole graph exploration). For k = 3 agents
there exists an exploration strategy for tadpole graphs with a competitive ratio of
2 for the time-, and 1 for the energy model.

Using three agents, when starting at the intersection one agent is sent in each
direction. When starting on a node with degree 2, one agent waits at s until the
intersection is found. Then each direction is assigned to an agent. At each step,
only the agent with the shortest distance to s after the next edge, traverses the
next edge. This leads to an exploration time of at most 4max(d(s, vℓ), d(s, vt))
and a competitive ratio of 2 in the time model. Since any agent only traverses one
path and returns, this leads to a maximum distance of 2max(d(s, vℓ), d(s, vt))
and a competitive ratio of 1 in the energy model.

Theorem 7 (Four agent tadpole graph exploration). Using k = 4 agents,
a competitive ratio of 1.5 can be achieved on tadpole graphs in the time model.

Using four agents, we send three teams containing one agent in each direction
when starting on the intersection, and two teams of two agents in each direction
when starting on a different node. When the intersection is first discovered, the
team on the intersection splits into two single-agent teams. Only one team (the
one that sees the largest distance to s) is waiting at any point in time. This leads
to an exploration time of at most 3max(d(s, vℓ), d(s, vt)) and a competitive ratio
of 1.5 in the time model.
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